Spark低版本适配Celeborn

Spark-3.5版本以下使用Celeborn时,无法使用动态资源,对于低版本的Spark,Celeborn提供了patch。各版本patch如下

https://github.com/apache/incubator-celeborn/tree/main/assets/spark-patch

下载patch,这里下载spark-3版本,将Celeborn_Dynamic_Allocation_spark3_3.patch放至spark-3.3.1源码目录下,和core同一层级,执行如下命令代码合并

bash 复制代码
patch -p1 < Celeborn_Dynamic_Allocation_spark3_3.patch

重新编译spark源码,并生成spark tgz包

bash 复制代码
./dev/make-distribution.sh --tgz --name custom-spark -Phadoop-3.2 -Dhadoop.version=3.2.1 \
 -Phive-3.2.1 -Phive-thriftserver -Pyarn -DskipTests

提交任务

bash 复制代码
 /opt/apps/SPARK3/spark-3.3.1-bin-custom-spark/bin/spark-submit \
--conf spark.shuffle.manager=org.apache.spark.shuffle.celeborn.SparkShuffleManager \
--conf spark.celeborn.client.spark.shuffle.writer=hash \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.celeborn.master.endpoints=celeborn-master:9097 \
--conf spark.sql.adaptive.enabled=true \
--conf spark.sql.adaptive.skewJoin.enabled=false \
--conf spark.celeborn.client.push.replicate.enabled=false \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.shuffle.service.enabled=false \
--conf spark.celeborn.storage.hdfs.dir=hdfs://hdfs-cluster/celeborn \
--conf spark.dynamicAllocation.initialExecutors=10 \
--conf spark.dynamicAllocation.minExecutors=0 \
--conf spark.dynamicAllocation.maxExecutors=10 \
--conf spark.dynamicAllocation.executorIdleTimeout=30s \
--queue dataAnalysis \
--class com.rs.dsp.etl.jobs.CommonUserTrackSessionDetailD \
--master yarn \
--deploy-mode cluster \
--driver-memory 4GB \
--executor-memory 15G \
--executor-cores 2 \
/root/rs-dsp-spark-1.0-SNAPSHOT-jar-with-dependencies.jar
相关推荐
涤生大数据4 小时前
从MR迁移到Spark3:数据倾斜与膨胀问题的实战优化
数据库·数据仓库·spark·mapreduce·大数据开发·数据倾斜·spark3
IT毕设梦工厂4 小时前
大数据毕业设计选题推荐-基于大数据的全国饮品门店数据可视化分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
亚林瓜子5 小时前
AWS中的离线计算(大数据大屏项目)
大数据·hadoop·sql·spark·云计算·aws
IT研究室6 小时前
大数据毕业设计选题推荐-基于大数据的青光眼数据可视化分析系统-大数据-Spark-Hadoop-Bigdata
大数据·hadoop·信息可视化·spark·毕业设计·源码·bigdata
哈哈很哈哈1 天前
Spark核心Shuffle详解(一)ShuffleManager
大数据·分布式·spark
孟意昶1 天前
Spark专题-第二部分:Spark SQL 入门(8)-算子介绍-sort
大数据·数据仓库·sql·spark
计算机毕设残哥1 天前
用Spark+Django打造食物营养数据可视化分析系统
大数据·hadoop·python·信息可视化·数据分析·spark·django
计算机编程小央姐2 天前
大数据毕业设计选题推荐:基于Hadoop+Spark的全球能源消耗数据分析与可视化系统
大数据·hadoop·数据分析·spark·课程设计·毕设
计算机编程小央姐2 天前
企业级大数据技术栈:基于Hadoop+Spark的全球经济指标分析与可视化系统实践
大数据·hadoop·hdfs·spark·echarts·numpy·课程设计
Q26433650232 天前
【有源码】基于Hadoop+Spark的AI就业影响数据分析与可视化系统-AI驱动下的就业市场变迁数据分析与可视化研究-基于大数据的AI就业趋势分析可视化平台
大数据·hadoop·机器学习·数据挖掘·数据分析·spark·毕业设计