Spark低版本适配Celeborn

Spark-3.5版本以下使用Celeborn时,无法使用动态资源,对于低版本的Spark,Celeborn提供了patch。各版本patch如下

https://github.com/apache/incubator-celeborn/tree/main/assets/spark-patch

下载patch,这里下载spark-3版本,将Celeborn_Dynamic_Allocation_spark3_3.patch放至spark-3.3.1源码目录下,和core同一层级,执行如下命令代码合并

bash 复制代码
patch -p1 < Celeborn_Dynamic_Allocation_spark3_3.patch

重新编译spark源码,并生成spark tgz包

bash 复制代码
./dev/make-distribution.sh --tgz --name custom-spark -Phadoop-3.2 -Dhadoop.version=3.2.1 \
 -Phive-3.2.1 -Phive-thriftserver -Pyarn -DskipTests

提交任务

bash 复制代码
 /opt/apps/SPARK3/spark-3.3.1-bin-custom-spark/bin/spark-submit \
--conf spark.shuffle.manager=org.apache.spark.shuffle.celeborn.SparkShuffleManager \
--conf spark.celeborn.client.spark.shuffle.writer=hash \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.celeborn.master.endpoints=celeborn-master:9097 \
--conf spark.sql.adaptive.enabled=true \
--conf spark.sql.adaptive.skewJoin.enabled=false \
--conf spark.celeborn.client.push.replicate.enabled=false \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.shuffle.service.enabled=false \
--conf spark.celeborn.storage.hdfs.dir=hdfs://hdfs-cluster/celeborn \
--conf spark.dynamicAllocation.initialExecutors=10 \
--conf spark.dynamicAllocation.minExecutors=0 \
--conf spark.dynamicAllocation.maxExecutors=10 \
--conf spark.dynamicAllocation.executorIdleTimeout=30s \
--queue dataAnalysis \
--class com.rs.dsp.etl.jobs.CommonUserTrackSessionDetailD \
--master yarn \
--deploy-mode cluster \
--driver-memory 4GB \
--executor-memory 15G \
--executor-cores 2 \
/root/rs-dsp-spark-1.0-SNAPSHOT-jar-with-dependencies.jar
相关推荐
Eternity......3 小时前
SparkSQL基本操作
大数据·spark
Eternity......7 小时前
Spark,连接MySQL数据库,添加数据,读取数据
大数据·spark
小伍_Five9 小时前
spark数据处理练习题详解【上】
java·开发语言·spark·scala
时光飞逝的日子11 小时前
linux下编写shell脚本一键编译源码
linux·shell·脚本·编译
Freedom℡12 小时前
Spark,连接MySQL数据库,添加数据,读取数据
数据库·hadoop·spark
小伍_Five12 小时前
spark数据处理练习题详解【下】
java·大数据·spark·scala
L耀早睡17 小时前
Spark缓存
大数据·数据库·spark
461K.17 小时前
写spark程序数据计算( 数据库的计算,求和,汇总之类的)连接mysql数据库,写入计算结果
大数据·分布式·spark
Hello World......20 小时前
Java求职面试揭秘:从Spring到微服务的技术挑战
大数据·hadoop·spring boot·微服务·spark·java面试·互联网大厂
yyywoaini~1 天前
idea中编写spark程序
spark