Spark低版本适配Celeborn

Spark-3.5版本以下使用Celeborn时,无法使用动态资源,对于低版本的Spark,Celeborn提供了patch。各版本patch如下

https://github.com/apache/incubator-celeborn/tree/main/assets/spark-patch

下载patch,这里下载spark-3版本,将Celeborn_Dynamic_Allocation_spark3_3.patch放至spark-3.3.1源码目录下,和core同一层级,执行如下命令代码合并

bash 复制代码
patch -p1 < Celeborn_Dynamic_Allocation_spark3_3.patch

重新编译spark源码,并生成spark tgz包

bash 复制代码
./dev/make-distribution.sh --tgz --name custom-spark -Phadoop-3.2 -Dhadoop.version=3.2.1 \
 -Phive-3.2.1 -Phive-thriftserver -Pyarn -DskipTests

提交任务

bash 复制代码
 /opt/apps/SPARK3/spark-3.3.1-bin-custom-spark/bin/spark-submit \
--conf spark.shuffle.manager=org.apache.spark.shuffle.celeborn.SparkShuffleManager \
--conf spark.celeborn.client.spark.shuffle.writer=hash \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.celeborn.master.endpoints=celeborn-master:9097 \
--conf spark.sql.adaptive.enabled=true \
--conf spark.sql.adaptive.skewJoin.enabled=false \
--conf spark.celeborn.client.push.replicate.enabled=false \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.shuffle.service.enabled=false \
--conf spark.celeborn.storage.hdfs.dir=hdfs://hdfs-cluster/celeborn \
--conf spark.dynamicAllocation.initialExecutors=10 \
--conf spark.dynamicAllocation.minExecutors=0 \
--conf spark.dynamicAllocation.maxExecutors=10 \
--conf spark.dynamicAllocation.executorIdleTimeout=30s \
--queue dataAnalysis \
--class com.rs.dsp.etl.jobs.CommonUserTrackSessionDetailD \
--master yarn \
--deploy-mode cluster \
--driver-memory 4GB \
--executor-memory 15G \
--executor-cores 2 \
/root/rs-dsp-spark-1.0-SNAPSHOT-jar-with-dependencies.jar
相关推荐
Q264336502318 小时前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
潘达斯奈基~19 小时前
spark性能优化1:通过依赖关系重组优化Spark性能:宽窄依赖集中处理实践
大数据·性能优化·spark
蒙特卡洛的随机游走1 天前
Spark核心数据(RDD、DataFrame 和 Dataset)
大数据·分布式·spark
蒙特卡洛的随机游走2 天前
Spark的宽依赖与窄依赖
大数据·前端·spark
Lansonli2 天前
大数据Spark(六十九):Transformation转换算子intersection和subtract使用案例
大数据·分布式·spark
励志成为糕手2 天前
宽依赖的代价:Spark 与 MapReduce Shuffle 的数据重分布对比
大数据·spark·mapreduce·分布式计算·sortshuffle
weixin_525936332 天前
部分Spark SQL编程要点
大数据·python·sql·spark
智海观潮3 天前
学好Spark必须要掌握的Scala技术点
大数据·spark·scala
数智顾问4 天前
破解 Shuffle 阻塞:Spark RDD 宽窄依赖在实时特征工程中的实战与未来
大数据·分布式·spark
想ai抽4 天前
吃透大数据算法-算法地图(备用)
大数据·数据库·spark