语义分割 U-net网络学习笔记 (附代码)

论文地址:https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28

代码地址:https://b23.tv/PCJJmqN

1.是什么?

Unet是一种用于图像分割的深度学习网络模型,其结构由编码器和解码器组成,可以对图像进行像素级别的分割。具体来说,编码器部分采用卷积神经网络对图像进行特征提取和降维,解码器部分则采用反卷积神经网络对特征进行上采样和重建。Unet的特点是具有较少的参数和较好的泛化能力,适用于小样本和多类别的图像分割任务。

2.为什么?

U-Net和FCN非常的相似,U-Net比FCN稍晚提出来,但都发表在2015年,和FCN相比,U-Net的第一个特点是完全对称,也就是左边和右边是很类似的,而FCN的decoder相对简单。第二个区别就是skip connection,FCN用的是加操作(summation),U-Net用的是叠操作(concatenation)。这些都是细节,重点是它们的结构用了一个比较经典的思路,也就是编码和解码(encoder-decoder)结构。其实可以将图像->高语义feature map的过程看成编码器,高语义->像素级别的分类score map的过程看作解码器

此外, 由于UNet也和FCN一样, 是全卷积形式, 没有全连接层(即没有固定图的尺寸),所以容易适应很多输入尺寸大小,但并不是所有的尺寸都可以,需要根据网络结构决定

3.怎么样?

3.1网络结构

如上图,Unet 网络结构是对称的,形似英文字母 U 所以被称为 Unet。整张图都是由蓝/白色框与各种颜色的箭头组成,其中,蓝/白色框表示 feature map;蓝色箭头表示 3x3 卷积,用于特征提取;灰色箭头表示 skip-connection,用于特征融合;红色箭头表示池化 pooling,用于降低维度;绿色箭头表示上采样 upsample,用于恢复维度;青色箭头表示 1x1 卷积,用于输出结果 。其中灰色箭头copy and crop中的copy就是concatenatecrop是为了让两者的长宽一致 。

Encoder 由卷积操作和下采样操作组成,文中所用的卷积结构统一为 3x3 的卷积核,padding 为 0 ,striding 为 1。没有 padding 所以每次卷积之后 feature map 的 H 和 W 变小了,在 skip-connection 时要注意 feature map 的维度(其实也可以将 padding 设置为 1 避免维度不对应问题)

3.2 代码实现

python 复制代码
from typing import Dict
import torch
import torch.nn as nn
import torch.nn.functional as F


class DoubleConv(nn.Sequential):
    def __init__(self, in_channels, out_channels, mid_channels=None):
        if mid_channels is None:
            mid_channels = out_channels
        super(DoubleConv, self).__init__(
            nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(mid_channels),
            nn.ReLU(inplace=True),
            nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(inplace=True)
        )


class Down(nn.Sequential):
    def __init__(self, in_channels, out_channels):
        super(Down, self).__init__(
            nn.MaxPool2d(2, stride=2),
            DoubleConv(in_channels, out_channels)
        )


class Up(nn.Module):
    def __init__(self, in_channels, out_channels, bilinear=True):
        super(Up, self).__init__()
        if bilinear:
            self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
            self.conv = DoubleConv(in_channels, out_channels, in_channels // 2)
        else:
            self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
            self.conv = DoubleConv(in_channels, out_channels)

    def forward(self, x1: torch.Tensor, x2: torch.Tensor) -> torch.Tensor:
        x1 = self.up(x1)
        # [N, C, H, W]
        diff_y = x2.size()[2] - x1.size()[2]
        diff_x = x2.size()[3] - x1.size()[3]

        # padding_left, padding_right, padding_top, padding_bottom
        x1 = F.pad(x1, [diff_x // 2, diff_x - diff_x // 2,
                        diff_y // 2, diff_y - diff_y // 2])

        x = torch.cat([x2, x1], dim=1)
        x = self.conv(x)
        return x


class OutConv(nn.Sequential):
    def __init__(self, in_channels, num_classes):
        super(OutConv, self).__init__(
            nn.Conv2d(in_channels, num_classes, kernel_size=1)
        )


class UNet(nn.Module):
    def __init__(self,
                 in_channels: int = 1,
                 num_classes: int = 2,
                 bilinear: bool = True,
                 base_c: int = 64):
        super(UNet, self).__init__()
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.bilinear = bilinear

        self.in_conv = DoubleConv(in_channels, base_c)
        self.down1 = Down(base_c, base_c * 2)
        self.down2 = Down(base_c * 2, base_c * 4)
        self.down3 = Down(base_c * 4, base_c * 8)
        factor = 2 if bilinear else 1
        self.down4 = Down(base_c * 8, base_c * 16 // factor)
        self.up1 = Up(base_c * 16, base_c * 8 // factor, bilinear)
        self.up2 = Up(base_c * 8, base_c * 4 // factor, bilinear)
        self.up3 = Up(base_c * 4, base_c * 2 // factor, bilinear)
        self.up4 = Up(base_c * 2, base_c, bilinear)
        self.out_conv = OutConv(base_c, num_classes)

    def forward(self, x: torch.Tensor) -> Dict[str, torch.Tensor]:
        x1 = self.in_conv(x)
        x2 = self.down1(x1)
        x3 = self.down2(x2)
        x4 = self.down3(x3)
        x5 = self.down4(x4)
        x = self.up1(x5, x4)
        x = self.up2(x, x3)
        x = self.up3(x, x2)
        x = self.up4(x, x1)
        logits = self.out_conv(x)

        return {"out": logits}

参考:

语义分割网络 U-Net 详解

Unet网络解析

相关推荐
西洼工作室6 分钟前
【java 正则表达式 笔记】
java·笔记·正则表达式
初学者7.27 分钟前
Webpack学习笔记(2)
笔记·学习·webpack
威化饼的一隅1 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
机器学习之心1 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
新手上路狂踩坑2 小时前
Android Studio的笔记--BusyBox相关
android·linux·笔记·android studio·busybox
MorleyOlsen3 小时前
【Trick】解决服务器cuda报错——RuntimeError: cuDNN error: CUDNN_STATUS_NOT_INITIALIZED
运维·服务器·深度学习
创意锦囊3 小时前
随时随地编码,高效算法学习工具—E时代IDE
ide·学习·算法
stm 学习ing3 小时前
HDLBits训练3
c语言·经验分享·笔记·算法·fpga·eda·verilog hdl
尘觉3 小时前
算法的学习笔记—扑克牌顺子(牛客JZ61)
数据结构·笔记·学习·算法
1 9 J3 小时前
Java 上机实践11(组件及事件处理)
java·开发语言·学习·算法