大数据学习(26)-spark SQL核心总结

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark SQL是Apache Spark的一个模块,它用于处理结构化数据。以下是Spark SQL的核心知识总结:

  1. 数据抽象:Spark SQL提供了DataFrame和DataSet两种数据抽象。DataFrame类似于RDD,但提供了更多的优化机制。DataSet是Spark最新的数据抽象,包含了DataFrame所有的优化机制。
  2. 执行引擎:Spark SQL使用了Catalyst作为其优化器,将SQL查询转换成RDD或DataFrame,然后提交到集群执行。相较于Hive,Spark SQL不需要依赖MapReduce,而是使用自己的执行计划。
  3. 数据源整合:Spark SQL可以读取多种数据源,包括Hive、Parquet、CSV、JSON等,并支持通过JDBC/ODBC连接访问其他数据库。
  4. 兼容性:Spark SQL与Hive兼容,可以通过启动thrift Server来支持JDBC/ODBC的访问,将自身作为一个BI Server使用。
  5. 性能优势:Spark SQL相较于RDD有更好的外部数据源读写支持,因为它直接访问列的能力,适用于处理结构化数据。
  6. 编程语言:Spark SQL支持使用Scala、Java、Python和R等多种编程语言编写应用程序。
  7. 数据处理:Spark SQL提供了丰富的数据处理功能,包括选择、过滤、聚合等操作,可以方便地进行数据转换和清洗。
  8. 分布式特性:Spark SQL作为分布式SQL查询引擎,可以处理大规模的数据集,并支持跨多个节点进行并行处理。

Spark SQL是一种功能强大的数据处理工具,适用于处理结构化数据。它提供了丰富的数据源整合、编程语言支持和数据处理功能,可以高效地处理大规模的数据集。

但是需要注意的是:

  1. 数据抽象方式:Spark使用RDD作为数据抽象方式,而Spark SQL使用DataFrame和DataSet作为数据抽象方式。
  2. 执行引擎:Spark使用自己的执行计划,而Spark SQL使用Catalyst作为优化器,将SQL查询转换成RDD或DataFrame,然后提交到集群执行。
  3. 性能优化:Spark SQL相较于Spark在处理结构化数据时具有更好的性能优化机制。
  4. 兼容性:Spark SQL与Hive兼容,可以通过启动thrift Server来支持JDBC/ODBC的访问,将自身作为一个BI Server使用。
  5. 编程语言支持:Spark支持使用Scala、Java、Python和R等多种编程语言编写应用程序,而Spark SQL主要支持使用Scala、Java和Python编写应用程序。
相关推荐
dsywws3 小时前
Linux学习笔记之vim入门
linux·笔记·学习
晨曦_子画4 小时前
3种最难学习和最容易学习的 3 种编程语言
学习
城南vision4 小时前
Docker学习—Docker核心概念总结
java·学习·docker
昨天今天明天好多天4 小时前
【数据仓库】
大数据
油头少年_w4 小时前
大数据导论及分布式存储HadoopHDFS入门
大数据·hadoop·hdfs
ctrey_5 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
十年之少5 小时前
由中文乱码引来的一系列学习——Qt
学习
Elastic 中国社区官方博客5 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理
力姆泰克5 小时前
看电动缸是如何提高农机的自动化水平
大数据·运维·服务器·数据库·人工智能·自动化·1024程序员节
力姆泰克5 小时前
力姆泰克电动缸助力农业机械装备,提高农机的自动化水平
大数据·服务器·数据库·人工智能·1024程序员节