大数据学习(26)-spark SQL核心总结

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark SQL是Apache Spark的一个模块,它用于处理结构化数据。以下是Spark SQL的核心知识总结:

  1. 数据抽象:Spark SQL提供了DataFrame和DataSet两种数据抽象。DataFrame类似于RDD,但提供了更多的优化机制。DataSet是Spark最新的数据抽象,包含了DataFrame所有的优化机制。
  2. 执行引擎:Spark SQL使用了Catalyst作为其优化器,将SQL查询转换成RDD或DataFrame,然后提交到集群执行。相较于Hive,Spark SQL不需要依赖MapReduce,而是使用自己的执行计划。
  3. 数据源整合:Spark SQL可以读取多种数据源,包括Hive、Parquet、CSV、JSON等,并支持通过JDBC/ODBC连接访问其他数据库。
  4. 兼容性:Spark SQL与Hive兼容,可以通过启动thrift Server来支持JDBC/ODBC的访问,将自身作为一个BI Server使用。
  5. 性能优势:Spark SQL相较于RDD有更好的外部数据源读写支持,因为它直接访问列的能力,适用于处理结构化数据。
  6. 编程语言:Spark SQL支持使用Scala、Java、Python和R等多种编程语言编写应用程序。
  7. 数据处理:Spark SQL提供了丰富的数据处理功能,包括选择、过滤、聚合等操作,可以方便地进行数据转换和清洗。
  8. 分布式特性:Spark SQL作为分布式SQL查询引擎,可以处理大规模的数据集,并支持跨多个节点进行并行处理。

Spark SQL是一种功能强大的数据处理工具,适用于处理结构化数据。它提供了丰富的数据源整合、编程语言支持和数据处理功能,可以高效地处理大规模的数据集。

但是需要注意的是:

  1. 数据抽象方式:Spark使用RDD作为数据抽象方式,而Spark SQL使用DataFrame和DataSet作为数据抽象方式。
  2. 执行引擎:Spark使用自己的执行计划,而Spark SQL使用Catalyst作为优化器,将SQL查询转换成RDD或DataFrame,然后提交到集群执行。
  3. 性能优化:Spark SQL相较于Spark在处理结构化数据时具有更好的性能优化机制。
  4. 兼容性:Spark SQL与Hive兼容,可以通过启动thrift Server来支持JDBC/ODBC的访问,将自身作为一个BI Server使用。
  5. 编程语言支持:Spark支持使用Scala、Java、Python和R等多种编程语言编写应用程序,而Spark SQL主要支持使用Scala、Java和Python编写应用程序。
相关推荐
Yff_world1 小时前
网络通信模型
学习·网络安全
野犬寒鸦2 小时前
从零起步学习并发编程 || 第一章:初步认识进程与线程
java·服务器·后端·学习
科技林总2 小时前
【系统分析师】6.3 企业信息化规划
学习
bubuly2 小时前
软件开发全流程注意事项:从需求到运维的全方位指南
大数据·运维·数据库
丝斯20113 小时前
AI学习笔记整理(67)——大模型的Benchmark(基准测试)
人工智能·笔记·学习
whale fall3 小时前
2026 年 1-3 月雅思口语完整话题清单(1-4 月通用最终版)
笔记·学习
xian_wwq4 小时前
【学习笔记】对网络安全“三化六防挂图作战”的理解与思考
笔记·学习·三化六防
AI视觉网奇4 小时前
metahuman 购买安装记录
笔记·学习·ue5
xixixi777774 小时前
基于零信任架构的通信
大数据·人工智能·架构·零信任·通信·个人隐私
Hello.Reader5 小时前
Flink 自适应批执行(Adaptive Batch Execution)让 Batch 作业“边跑边优化”
大数据·flink·batch