大数据学习(26)-spark SQL核心总结

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark SQL是Apache Spark的一个模块,它用于处理结构化数据。以下是Spark SQL的核心知识总结:

  1. 数据抽象:Spark SQL提供了DataFrame和DataSet两种数据抽象。DataFrame类似于RDD,但提供了更多的优化机制。DataSet是Spark最新的数据抽象,包含了DataFrame所有的优化机制。
  2. 执行引擎:Spark SQL使用了Catalyst作为其优化器,将SQL查询转换成RDD或DataFrame,然后提交到集群执行。相较于Hive,Spark SQL不需要依赖MapReduce,而是使用自己的执行计划。
  3. 数据源整合:Spark SQL可以读取多种数据源,包括Hive、Parquet、CSV、JSON等,并支持通过JDBC/ODBC连接访问其他数据库。
  4. 兼容性:Spark SQL与Hive兼容,可以通过启动thrift Server来支持JDBC/ODBC的访问,将自身作为一个BI Server使用。
  5. 性能优势:Spark SQL相较于RDD有更好的外部数据源读写支持,因为它直接访问列的能力,适用于处理结构化数据。
  6. 编程语言:Spark SQL支持使用Scala、Java、Python和R等多种编程语言编写应用程序。
  7. 数据处理:Spark SQL提供了丰富的数据处理功能,包括选择、过滤、聚合等操作,可以方便地进行数据转换和清洗。
  8. 分布式特性:Spark SQL作为分布式SQL查询引擎,可以处理大规模的数据集,并支持跨多个节点进行并行处理。

Spark SQL是一种功能强大的数据处理工具,适用于处理结构化数据。它提供了丰富的数据源整合、编程语言支持和数据处理功能,可以高效地处理大规模的数据集。

但是需要注意的是:

  1. 数据抽象方式:Spark使用RDD作为数据抽象方式,而Spark SQL使用DataFrame和DataSet作为数据抽象方式。
  2. 执行引擎:Spark使用自己的执行计划,而Spark SQL使用Catalyst作为优化器,将SQL查询转换成RDD或DataFrame,然后提交到集群执行。
  3. 性能优化:Spark SQL相较于Spark在处理结构化数据时具有更好的性能优化机制。
  4. 兼容性:Spark SQL与Hive兼容,可以通过启动thrift Server来支持JDBC/ODBC的访问,将自身作为一个BI Server使用。
  5. 编程语言支持:Spark支持使用Scala、Java、Python和R等多种编程语言编写应用程序,而Spark SQL主要支持使用Scala、Java和Python编写应用程序。
相关推荐
Main. 2415 分钟前
从0到1学习Qt -- 常见控件之显示类控件
qt·学习
e***193517 分钟前
爬虫学习 01 Web Scraper的使用
前端·爬虫·学习
天硕国产存储技术站4 小时前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件4 小时前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
二川bro5 小时前
多模态AI开发:Python实现跨模态学习
人工智能·python·学习
石像鬼₧魂石5 小时前
Netcat,网络瑞士军刀(新手学习备用)
学习
东哥说-MES|从入门到精通5 小时前
数字化部分内容 | 十四五年规划和2035年远景目标纲要(新华社正式版)
大数据·人工智能·数字化转型·mes·数字化工厂·2035·十四五规划
todoitbo6 小时前
基于 DevUI MateChat 搭建前端编程学习智能助手:从痛点到解决方案
前端·学习·ai·状态模式·devui·matechat
南飞测绘视界6 小时前
上市公司绿色专利申请、授权数据(1999-2024年)
大数据·专利·上市公司
一个天蝎座 白勺 程序猿7 小时前
KingbaseES在政务领域的应用实践——武汉人社大数据平台“数字化服务新模式”
大数据·数据库·政务·kingbasees·金仓数据库