论文阅读——SEEM

arxiv:

分割模型向比较灵活的分割的趋势的转变:封闭到开放,通用到特定、one-shot到交互式。From closed-set to open-vocabulary segmentation,From generic to referring segmentation,From one-shot to interactive segmentation。

图片:

图片提取的特征:

初始化一个可学习的查询向量Qh:

通过Text_Encoder得到文本提示Pt:Text_Encoder(prompt_text)

通过VisualSampler得到

Pm初始化None,后面结合特征和之前的mask通过MaskedCrossAtt得到:

这样就得到了

相应的提示通过自我注意力与查询交互。可学习查询可以在推理时与所有提示自由交互。

也就是说,一张图片经过一个Img_Encoder得到特征Z;初始化一个可学习的查询Qh,并把它复制三份得到(即object, text and visual queries)三种查询的初始化。然后文本提示用Text_Encoder得到文本提示Pt,Pv通过VisualSampler得到。Pm初始化None,后面结合特征和之前的mask通过MaskedCrossAtt得到。

其中,VisualSampler应该是根据s,即prompt,通过点采样从图像特征中提取相应的区域,然后在这个区域均匀地插值最多512点特征向量。MaskedCrossAtt中,Mp是先前的mask, 而Z是图像特征图。通过这种方式,交叉关注仅在上一个掩码指定的区域内生效。更新后的记忆提示然后通过自我注意与其他提示交互,以传达本轮的历史信息。

得到这些查询、提示和图片特征后,他们自己可以通过注意力机制进行交互,得到,然后再预测mask M和类别 C。

在实践中,用户可以使用不同的或组合的提示类型来表达他们的意图。因此,提示的组合方法对于现实世界的应用是必不可少的。然而,在模型训练过程中,我们面临两个问题。首先,训练数据通常只涵盖单一类型的交互(例如,无、文本、视觉)。其次,尽管我们使用视觉提示来统一所有非文本提示,并将它们与文本提示对齐,但它们的嵌入空间本质上仍然不同。为了缓解这个问题,我们建议将不同类型的提示与不同的输出进行匹配。考虑到视觉提示Pv来自图像特征,而文本提示Pt来自文本编码器,我们通过将视觉提示和文本提示分别与掩码嵌入Omh或类嵌入Och匹配来选择匹配的输出索引:

之前的分割模型,比如SAM的分割是类别不可知的,即class-agnostic,SEEM以零样本的方式为各种提示组合的掩码产生语义标签.

损失函数:

SEEM的伪代码如下:

实验部分:

除了decoder部分,用的X-Decoder框架。

相关推荐
m0_650108242 小时前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼2 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试2 小时前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
唐兴通个人3 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
共绩算力3 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector4 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会4 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥4 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
赞奇科技Xsuperzone5 小时前
DGX Spark 实战解析:模型选择与效率优化全指南
大数据·人工智能·gpt·spark·nvidia
音视频牛哥5 小时前
SmartMediaKit:如何让智能系统早人一步“跟上现实”的时间架构--从实时流媒体到系统智能的演进
人工智能·计算机视觉·音视频·音视频开发·具身智能·十五五规划具身智能·smartmediakit