论文阅读——SEEM

arxiv:

分割模型向比较灵活的分割的趋势的转变:封闭到开放,通用到特定、one-shot到交互式。From closed-set to open-vocabulary segmentation,From generic to referring segmentation,From one-shot to interactive segmentation。

图片:

图片提取的特征:

初始化一个可学习的查询向量Qh:

通过Text_Encoder得到文本提示Pt:Text_Encoder(prompt_text)

通过VisualSampler得到

Pm初始化None,后面结合特征和之前的mask通过MaskedCrossAtt得到:

这样就得到了

相应的提示通过自我注意力与查询交互。可学习查询可以在推理时与所有提示自由交互。

也就是说,一张图片经过一个Img_Encoder得到特征Z;初始化一个可学习的查询Qh,并把它复制三份得到(即object, text and visual queries)三种查询的初始化。然后文本提示用Text_Encoder得到文本提示Pt,Pv通过VisualSampler得到。Pm初始化None,后面结合特征和之前的mask通过MaskedCrossAtt得到。

其中,VisualSampler应该是根据s,即prompt,通过点采样从图像特征中提取相应的区域,然后在这个区域均匀地插值最多512点特征向量。MaskedCrossAtt中,Mp是先前的mask, 而Z是图像特征图。通过这种方式,交叉关注仅在上一个掩码指定的区域内生效。更新后的记忆提示然后通过自我注意与其他提示交互,以传达本轮的历史信息。

得到这些查询、提示和图片特征后,他们自己可以通过注意力机制进行交互,得到,然后再预测mask M和类别 C。

在实践中,用户可以使用不同的或组合的提示类型来表达他们的意图。因此,提示的组合方法对于现实世界的应用是必不可少的。然而,在模型训练过程中,我们面临两个问题。首先,训练数据通常只涵盖单一类型的交互(例如,无、文本、视觉)。其次,尽管我们使用视觉提示来统一所有非文本提示,并将它们与文本提示对齐,但它们的嵌入空间本质上仍然不同。为了缓解这个问题,我们建议将不同类型的提示与不同的输出进行匹配。考虑到视觉提示Pv来自图像特征,而文本提示Pt来自文本编码器,我们通过将视觉提示和文本提示分别与掩码嵌入Omh或类嵌入Och匹配来选择匹配的输出索引:

之前的分割模型,比如SAM的分割是类别不可知的,即class-agnostic,SEEM以零样本的方式为各种提示组合的掩码产生语义标签.

损失函数:

SEEM的伪代码如下:

实验部分:

除了decoder部分,用的X-Decoder框架。

相关推荐
Jing_Rainbow2 分钟前
【AI-9/Lesson30(2025-11-12)】AI + Vibe Coding:Hulk 浏览器扩展开发全解析 —— 从需求文档到实战的完整指南🌈
前端·人工智能·程序员
Cisyam^5 分钟前
Bright Data AI Scraper Studio:一句话生成企业级爬虫
人工智能·爬虫
EasyCVR17 分钟前
视频汇聚平台EasyCVR助力农场实现全场景可视化管理
大数据·人工智能·音视频
阿里云大数据AI技术20 分钟前
Fusion 引擎赋能:七猫如何使用阿里云 EMR Serverless Spark 实现数仓加速
人工智能
fengfuyao98522 分钟前
MATLAB实现全景拼接
人工智能·计算机视觉·matlab
好游科技25 分钟前
语音语聊系统开发深度解析:WebRTC与AI降噪技术如何重塑
人工智能·webrtc·交友·im即时通讯·社交软件·社交语音视频软件
西格电力科技30 分钟前
源网荷储与碳中和:推动能源清洁转型的关键路径
大数据·人工智能·分布式·系统架构·能源
HyperAI超神经30 分钟前
在线教程丨30毫秒处理100个检测对象,SAM 3实现可提示概念分割,性能提升2倍
人工智能·计算机视觉·ai·图像分割·sam 3
Study9961 小时前
科普专栏|大语言模型:理解与生成语言的人工智能
人工智能·深度学习·机器学习·大模型·agent·大模型微调·大模型应用开发
xixixi777771 小时前
CRNN(CNN + RNN + CTC):OCR识别的经典之作
人工智能·rnn·学习·架构·cnn·ocr·图像识别