论文阅读——SEEM

arxiv:

分割模型向比较灵活的分割的趋势的转变:封闭到开放,通用到特定、one-shot到交互式。From closed-set to open-vocabulary segmentation,From generic to referring segmentation,From one-shot to interactive segmentation。

图片:

图片提取的特征:

初始化一个可学习的查询向量Qh:

通过Text_Encoder得到文本提示Pt:Text_Encoder(prompt_text)

通过VisualSampler得到

Pm初始化None,后面结合特征和之前的mask通过MaskedCrossAtt得到:

这样就得到了

相应的提示通过自我注意力与查询交互。可学习查询可以在推理时与所有提示自由交互。

也就是说,一张图片经过一个Img_Encoder得到特征Z;初始化一个可学习的查询Qh,并把它复制三份得到(即object, text and visual queries)三种查询的初始化。然后文本提示用Text_Encoder得到文本提示Pt,Pv通过VisualSampler得到。Pm初始化None,后面结合特征和之前的mask通过MaskedCrossAtt得到。

其中,VisualSampler应该是根据s,即prompt,通过点采样从图像特征中提取相应的区域,然后在这个区域均匀地插值最多512点特征向量。MaskedCrossAtt中,Mp是先前的mask, 而Z是图像特征图。通过这种方式,交叉关注仅在上一个掩码指定的区域内生效。更新后的记忆提示然后通过自我注意与其他提示交互,以传达本轮的历史信息。

得到这些查询、提示和图片特征后,他们自己可以通过注意力机制进行交互,得到,然后再预测mask M和类别 C。

在实践中,用户可以使用不同的或组合的提示类型来表达他们的意图。因此,提示的组合方法对于现实世界的应用是必不可少的。然而,在模型训练过程中,我们面临两个问题。首先,训练数据通常只涵盖单一类型的交互(例如,无、文本、视觉)。其次,尽管我们使用视觉提示来统一所有非文本提示,并将它们与文本提示对齐,但它们的嵌入空间本质上仍然不同。为了缓解这个问题,我们建议将不同类型的提示与不同的输出进行匹配。考虑到视觉提示Pv来自图像特征,而文本提示Pt来自文本编码器,我们通过将视觉提示和文本提示分别与掩码嵌入Omh或类嵌入Och匹配来选择匹配的输出索引:

之前的分割模型,比如SAM的分割是类别不可知的,即class-agnostic,SEEM以零样本的方式为各种提示组合的掩码产生语义标签.

损失函数:

SEEM的伪代码如下:

实验部分:

除了decoder部分,用的X-Decoder框架。

相关推荐
飞哥数智坊5 小时前
AI编程实战:Cursor+Claude4助力15分钟完成大屏开发
人工智能·claude·cursor
Kier8 小时前
基于YOLO实现一个智能条码识别
人工智能·python·ai编程
我是王大你是谁8 小时前
SmolVLA:一种用于经济实惠和高效的机器人视觉-语言-动作模型
人工智能·llm
MarkGosling8 小时前
【语音合成】B 站开源 IndexTTS :声音克隆,吊打真人发音,断句精准度 98%
人工智能·python
数据智能老司机9 小时前
AI产品开发的艺术——搜索与检索增强生成
人工智能·产品经理·产品
机器之心9 小时前
逐个token太慢!大模型原生并行出token,CMU、英伟达新作Multiverse
人工智能·llm
AI大模型技术社10 小时前
⚙️企业级Transformer优化:混合精度×梯度裁剪×权重初始化最佳实践
人工智能·llm
机器之心10 小时前
首个转型AI公司的新势力,在全球AI顶会展示下一代自动驾驶模型
人工智能
机器之心10 小时前
同一天开源新模型,一推理一编程,MiniMax和月之暗面开卷了
人工智能
腾讯云开发者10 小时前
腾讯云TVP走进青岛啤酒,解码数字化驱动智慧零售增长引擎
人工智能