数据库之 redis

前言:

就学习爬虫而言,对于三种常见的数据库做个基本了解足以,所以笔记都是浅尝辄止,不会涉及太深入的东西。

redis简介

Redis(Remote Dictionary Server ,远程字典服务) 是一个使用ANSI C编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库,是NoSQL数据库(非关系型)。

-------------->>>>>

redis的出现主要是为了替代早期的Memcache缓存系统的。map内存型(数据存放在内存中)的非关系型(nosql)key-value(键值存储)数据库。

支持数据的持久化(基于RDB和AOF,注: 数据持久化时将数据存放到文件中,每次启动redis之后会先将文件中数据加载到内存,经常用来做缓存、数据共享、购物车、消息队列、计数器、限流等。(最基本的就是缓存一些经常用到的数据,提高读写速度)

redis特性

● 速度快

● 持久化

● 多种数据结构

● 支持多种编程语言

● 主从复制

● 高可用、分布式

Redis的数据类型及主要特性

Redis提供的数据类型主要分为5种自有类型和一种自定义类型。

这5种自有类型包括:String类型、哈希类型、列表类型、集合类型和顺序集合类型。

示例如下:

XML 复制代码
#很像python的一个大字典:
redis={
"name":"hailey",                      #String类型
"age":"23",                           #String--数字类型
"scors":[78,79,98,],                  #list类型
"info":{"gender":"male","tel":"110"}, #哈希类型,键值结构嵌套键值
"set":{1,2,3},                        #集合类型              
"zset":{1,2,3,}                       #有序集合
}

Redis的应用场景

● 缓存系统("热点"数据:高频读、低频写):缓存用户信息,优惠券过期时间,验证码过期时间、session、token等。

● 计数器:帖子的浏览数,视频播放次数,评论次数、点赞次数等

● 消息队列,秒杀系统

● 社交网络:粉丝、共同好友(可能认识的人),兴趣爱好(推荐商品)

● 排行榜(有序集合)

● 发布订阅:粉丝关注、消息通知


在实际中,Redis常和mysql一起使用,通常先把数据存储在Redis,再同步给mysql,查询的时候也是先从Redis中进行查询;例如有时候在网站修改名字不刷新的时候没更新成功,就是因为还在缓存。主要图Redis存储特别快。

redis环境安装

官方原版: https://redis.io/

虽然 Redis 官方网站没有提供 Windows 版的安装包,但可以通过 GitHub 来下载 Windows 版 Redis 安装包

下载地址:点击前往

=====================================================================

安装时一路next

★ 到" Destination Folder"界面选择安装目录、勾选add path全局变量

★ "ort Number and Firewall Exception"端口号默认:6379

★ "Memory Limit"勾选"Set the Max Memory lmit"可修改Max Memory MB,即redis占用内存的限制。

下面详细记录windows的完整安装步骤:

❶ 进入GitHub开始下载:

解压zip安装包,解压后的文件目录:

❷ 创建Redis临时服务:

双击启动服务端程序redis.server.exe,界面如下

上图中显示一些 Redis 的相关信息,比如 Redis 的版本号以及默认端口号(6379)。

注意,为了实现后续操作,需要保持服务端开启状态,否则客户端无法正常工作。

双击启动客户端程序redis.cli.exe,界面如下:说明 Redis 本地客户端与服务端连接成功。

❸ 命令创建Redis服务:

上述方式虽然简单快捷,但是显然不是程序员的操作,下面介绍,通过命令启动 Redis 服务端,并将 Redis 服务添加到 Windows 资源管理器,实现开机后自动启动。

注册Redis服务

通过 CMD 命令行工具进入 Redis 安装目录,将 Redis 服务注册到 Windows 服务中,执行以下命令:

XML 复制代码
redis-server.exe --service-install redis.windows.conf --loglevel verbose

执行后输出8060这两行,说明注册成功:

启动Redis服务

执行以下命令启动 Redis 服务,命令如下:

XML 复制代码
redis-server --service-start

执行启动后,如下所示:

注意:

此时 Redis 已经被添加到 Windows 服务中(cmd中输入services.msc),因此不会再显示 Redis 服务端的相应的信息:

启动Redis客户端

在 CMD 命令行输出 redis-cli 命令启动客户端

XML 复制代码
redis-cli

如下:

检查是否连接成功

测试客户端和服务端是否成功连接。输出PING命令,若返回PONG则证明成功连接:

❹ 配置环境变量:

此电脑 -> 右击"属性" -> 高级系统设置 -> 环境变量 ->系统变量(s) -> 双击path -> 新建,填写路径

安装命令总结

XML 复制代码
安装服务:redis-server --service-install
卸载服务:redis-server --service-uninstall
开启服务:redis-server --service-start
停止服务:redis-server --service-stop
服务端启动时重命名:redis-server --service-start --service-name Redis1

Python操作redis

连接redis

在python中有一个专门的redis第三库

还是需要先进行安装:pip install redis

引用:import redis

链接方式1:

import redis(在python中improt之前,本地还是需要先进行安装redis)

XML 复制代码
r = redis.Redis(host='本地ip', port=6379)  #本机链接也可省略host和port
r.set('foo', 'Bar')    #写入数据
print(r.get('foo'))    #获取数据

链接方式2:

cpp 复制代码
import redis
 
pool = redis.ConnectionPool(host='服务器ip', port=6379)  #远程链接必须写
r = redis.Redis(connection_pool=pool)
r.set('bar', 'Foo')        #写入数据
print(r.get('bar'))        #获取数据

通常情况下, 当我们需要做redis操作时, 会创建一个连接, 并基于这个连接进行redis操作, 操作完成后, 释放连接,一般情况下, 这是没问题的, 但当并发量比较高的时候, 频繁的连接创建和释放对性能会有较高的影响。

于是, 连接池就发挥作用了。连接池的原理是, 通过预先创建多个连接, 当进行redis操作时, 直接获取已经创建的连接进行操作, 而且操作完成后, 不会释放, 用于后续的其他redis操作。

这样就达到了避免频繁的redis连接创建和释放的目的, 从而提高性能。

数据类型操作

(1) 字符串操作

bash 复制代码
import redis
 
pool = redis.ConnectionPool(host='ip', port=6379, db=0, decode_responses=True)
r = redis.Redis(connection_pool=pool)
 
#字符串操作:不允许对已经存在的键设置值
ret = r.setnx("name", "eric")
print(ret)  # False
 
 
#设置键有效期
r.setex("good_1001", 10, "2")
 
 
#字符串操作:自增自减
r.set("age", 20)
r.incrby("age", 2)
print(r.get("age"))  # b'22'

(2) hash操作

bash 复制代码
import redis
 
pool = redis.ConnectionPool(host='ip', port=6379, db=0, decode_responses=True)
r = redis.Redis(connection_pool=pool)
 
 
 
r.hset("info", "name", "rain")
print(r.hget("info", "name"))  # b'rain'
r.hmset("info", {"gedner": "male", "age": 22})
print(r.hgetall("info"))  # {b'name': b'rain', b'gender': b'male', b'age': b'22'}

(3) list操作

cpp 复制代码
import redis
 
pool = redis.ConnectionPool(host='ip', port=6379, db=0, decode_responses=True)
r = redis.Redis(connection_pool=pool)
 
 
r.rpush("scores", "100", "90", "80")
r.rpush("scores", "70")
r.lpush("scores", "120")
print(r.lrange("scores", 0, -1))  # ['120', '100', '90', '80', '70']
r.linsert("scores", "AFTER", "100", 95)
print(r.lrange("scores", 0, -1))  # ['120', '100', '95', '90', '80', '70']
print(r.lpop("scores"))  # 120
print(r.rpop("scores"))  # 70
print(r.lindex("scores", 1)) # '95'

(4) 集合操作

bash 复制代码
import redis
 
pool = redis.ConnectionPool(host='ip', port=6379, db=0, decode_responses=True)
r = redis.Redis(connection_pool=pool)
 
 
# key对应的集合中添加元素
r.sadd("name_set", "zhangsan", "lisi", "wangwu")
# 获取key对应的集合的所有成员
print(r.smembers("name_set"))  # {'lisi', 'zhangsan', 'wangwu'}
# 从key对应的集合中随机获取 numbers 个元素
print(r.srandmember("name_set", 2))
r.srem("name_set", "lisi")
print(r.smembers("name_set"))  # {'wangwu', 'zhangsan'}

(5) 有序集合操作

bash 复制代码
import redis
 
pool = redis.ConnectionPool(host='ip', port=6379, db=0, decode_responses=True)
r = redis.Redis(connection_pool=pool)
 
# 在key对应的有序集合中添加元素
r.zadd("jifenbang", {"yuan": 78, "rain": 20, "alvin": 89, "eric": 45})
# 按照索引范围获取key对应的有序集合的元素
# zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)
print(r.zrange("jifenbang", 0, -1))  # ['rain', 'eric', 'yuan', 'alvin']
print(r.zrange("jifenbang", 0, -1, withscores=True))  # ['rain', 'eric', 'yuan', 'alvin']
print(r.zrevrange("jifenbang", 0, -1, withscores=True))  # ['rain', 'eric', 'yuan', 'alvin']
 
 
print(r.zrangebyscore("jifenbang", 0, 100))
print(r.zrangebyscore("jifenbang", 0, 100, start=0, num=1))
 
# 删除key对应的有序集合中值是values的成员
print(r.zrem("jifenbang", "yuan"))  # 删除成功返回1
print(r.zrange("jifenbang", 0, -1))  # ['rain', 'eric', 'alvin']

(6) 键操作

bash 复制代码
import redis
 
pool = redis.ConnectionPool(host='ip', port=6379, db=0, decode_responses=True)
r = redis.Redis(connection_pool=pool)
 
 
r.delete("scores")
print(r.exists("scores"))
print(r.keys("*"))
r.expire("name",10)
相关推荐
MonkeyKing_sunyuhua1 小时前
Ehcache、Caffeine、Spring Cache、Redis、J2Cache、Memcached 和 Guava Cache 的主要区别
redis·spring·memcached
费弗里2 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(1)
python·dash
李少兄9 天前
解决OSS存储桶未创建导致的XML错误
xml·开发语言·python
就叫飞六吧9 天前
基于keepalived、vip实现高可用nginx (centos)
python·nginx·centos
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
学Linux的语莫9 天前
python基础语法
开发语言·python
匿名的魔术师9 天前
实验问题记录:PyTorch Tensor 也会出现 a = b 赋值后,修改 a 会影响 b 的情况
人工智能·pytorch·python
Ven%9 天前
PyTorch 张量(Tensors)全面指南:从基础到实战
人工智能·pytorch·python
mahuifa9 天前
PySide环境配置及工具使用
python·qt·环境配置·开发经验·pyside
大熊猫侯佩9 天前
ruby、Python 以及 Swift 语言关于 “Finally” 实现的趣谈
python·ruby·swift