如何实现图像搜索,文搜图,图搜图,CLIP+faiss向量数据库实现图像高效搜索

如何实现图像搜索,文搜图,图搜图,CLIP+faiss向量数据库实现图像高效搜索

这是AIGC的时代,各种GPT大模型生成文本,还有多模态图文并茂大模型,

以及stable diffusion和stable video diffusion 图像生成视频生成等新模型,

层出不穷,如何生成一个图文并貌的文章,怎么在合适的段落加入图像,图像用什么方式获取,

图像可以使用搜索的形式获取,也可以使用stable diffusion生成

今天说说怎么使用搜索的形式获取,这种方式更高效,节省算力,更容易落地

clip模型,详细可以查看知乎

https://zhuanlan.zhihu.com/p/511460120

或论文https://arxiv.org/pdf/2103.00020.pdf

什么是faiss数据库

Faiss的全称是Facebook AI Similarity Search,是FaceBook的AI团队针对大规模相似度检索问题开发的一个工具,使用C++编写,有python接口,对10亿量级的索引可以做到毫秒级检索的性能。

简单来说,Faiss的工作,就是把我们自己的候选向量集封装成一个index数据库,它可以加速我们检索相似向量TopK的过程,其中有些索引还支持GPU构建,可谓是强上加强。

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/

1.huggingface下载clip模型,默认是英文版,也有中文版,英文版的效果会更好些

英文版

复制代码
from PIL import Image
import requests

from transformers import CLIPProcessor, CLIPModel

model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# url = "http://images.cocodataset.org/val2017/000000039769.jpg"
# image = Image.open(requests.get(url, stream=True).raw)

# inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True)

# image_features = model.get_image_features(inputs["pixel_values"])
# text_features = model.get_text_features(inputs["input_ids"],inputs["attention_mask"])


# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image # this is the image-text similarity score
# probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities

# print(probs)

中文版

复制代码
from PIL import Image
import requests
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
import torch

device = torch.device("mps")

model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")

# url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
# image = Image.open(requests.get(url, stream=True).raw)
# Squirtle, Bulbasaur, Charmander, Pikachu in English
# texts = ["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]

# # compute image feature
# inputs = processor(images=image, return_tensors="pt")
# image_features = model.get_image_features(**inputs)
# image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)  # normalize

# # compute text features
# inputs = processor(text=texts, padding=True, return_tensors="pt")
# text_features = model.get_text_features(**inputs)
# text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)  # normalize

# # compute image-text similarity scores
# inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
# outputs = model(**inputs)
# logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
# probs = logits_per_image.softmax(dim=1)  # probs: [[1.2686e-03, 5.4499e-02, 6.7968e-04, 9.4355e-01]]

2.可以爬一些图片,做图像库,搜索也是在这个图像库中搜索,这个爬取的图像内容和业务场景相关,

比如你想获取动物的图像,那主要爬动物的就可以,这是我随便下载的一些图片

3.把图像映射成向量,存储在向量数据库faiss中

复制代码
# from clip_model import model,processor
import faiss
from PIL import Image
import os
import json
from chinese_clip import model,processor
from tqdm import tqdm

d = 512
index = faiss.IndexFlatL2(d)   # 使用 L2 距离

# 文件夹路径
# folder_path = '/Users/smzdm/Downloads/Animals_with_Attributes2 2/JPEGImages'
folder_path = "image"

# 遍历文件夹
file_paths = []
for root, dirs, files in os.walk(folder_path):
    for file in files:
        # 检查文件是否为图片文件(这里简单地检查文件扩展名)
        if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
            file_path = os.path.join(root, file)
            file_paths.append(file_path)

id2filename = {idx:x for idx,x in enumerate(file_paths)}
# 保存为 JSON 文件
with open('id2filename.json', 'w') as json_file:
    json.dump(id2filename, json_file)

for file_path in tqdm(file_paths,total=len(file_paths)):
    # 使用PIL打开图片
    image = Image.open(file_path)
    inputs = processor(images=image, return_tensors="pt", padding=True)
    image_features = model.get_image_features(inputs["pixel_values"])
    image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)  # normalize
    image_features = image_features.detach().numpy()
    index.add(image_features)
    # 关闭图像,释放资源
    image.close()

faiss.write_index(index, "image.faiss")

4.加载数据库文件和索引文件,使用文本搜索图像或图像搜索图像

复制代码
# from clip_model import model,processor
import faiss
from PIL import Image
import os
import json
from chinese_clip import model,processor


d = 512
index = faiss.IndexFlatL2(d)   # 使用 L2 距离

# 保存为 JSON 文件
with open('id2filename.json', 'r') as json_file:
    id2filename = json.load(json_file)
index = faiss.read_index("image.faiss")


def text_search(text,k=1):
    inputs = processor(text=text, images=None, return_tensors="pt", padding=True)
    text_features = model.get_text_features(inputs["input_ids"],inputs["attention_mask"])
    text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)  # normalize
    text_features = text_features.detach().numpy()
    D, I = index.search(text_features, k)  # 实际的查询

    filenames = [[id2filename[str(j)] for j in i] for i in I]

    return text,D,filenames

def image_search(img_path,k=1):
    image = Image.open(img_path)
    inputs = processor(images=image, return_tensors="pt")
    image_features = model.get_image_features(**inputs)
    image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)  # normalize

    image_features = image_features.detach().numpy()
    D, I = index.search(image_features, k)  # 实际的查询

    filenames = [[id2filename[str(j)] for j in i] for i in I]

    return img_path,D,filenames



if __name__ == "__main__":

    text = ["雪山","熊猫","长城","苹果"]
    text,D,filenames = text_search(text)
    print(text,D,filenames)

    # img_path = "image/apple2.jpeg"
    # img_path,D,filenames = image_search(img_path,k=2)
    # print(img_path,D,filenames)

比如用文字搜索

复制代码
["雪山","熊猫","长城","苹果"]
返回结果:

'雪山', '熊猫', '长城', '苹果'\] \[\[1.2182312

1.1529984

1.1177421

1.1656866\]\] \[\['image/OIP (10).jpeg'\], \['image/OIP.jpeg'\], \['image/OIP (8).jpeg'\], \['image/apple2.jpeg'\]

复制代码
复制代码
复制代码
还可以使用图片搜图片,打开下面的注释

返回结果

image/apple2.jpeg [[0. 0.11877532]] [['image/apple2.jpeg', 'image/OIP (14).jpeg']]

复制代码
第一张图像是本身,完全相似,第二张可以看到是一个苹果
复制代码
 
相关推荐
sali-tec2 分钟前
C# 基于halcon的视觉工作流-章70 深度学习-Deep OCR
开发语言·人工智能·深度学习·算法·计算机视觉·c#·ocr
laocooon5238578862 分钟前
TensorFlow与 PyTorch有什么关联么
人工智能·pytorch·tensorflow
serve the people3 分钟前
tensorflow 深度解析 Sequential 模型的创建与层管理
人工智能·python·tensorflow
渡我白衣5 分钟前
C++可变参数队列与压栈顺序:从模板语法到汇编调用约定的深度解析
c语言·汇编·c++·人工智能·windows·深度学习·硬件架构
wxdlfkj6 分钟前
微米级精度的光谱共焦位移传感器在多层透明极片涂层厚度测量中的应用
网络·人工智能·自动化
威风的虫6 分钟前
拾题:从零构建AI驱动的考研助手
人工智能
ooope7 分钟前
从2025年来看,AI 泡沫是否会在一两年内破灭
人工智能
m0_692457108 分钟前
计算机眼中的图像
人工智能·计算机视觉
AI算法蒋同学10 分钟前
02.AIGC初学者指南-生成式人工智能和大型语言模型简介
人工智能·搜索引擎·语言模型
狮子也疯狂10 分钟前
【智能编程助手】| 鸿蒙系统下的AI辅助编程实战
人工智能·华为·harmonyos