Group normalization是什么

在您提供的代码中,使用了 nn.GroupNorm 来创建一个规范化层。GroupNorm 是一种规范化技术,与批量规范化(Batch Normalization)和层规范化(Layer Normalization)相似,但有一些关键的区别。

Group Normalization(组规范化)的工作原理如下:

  1. 分组 :它将输入的特征(或通道)分成若干组。在 nn.GroupNorm(1, dim) 这行代码中,1 指的是分组数量,这里分为一组意味着所有的特征通道都在同一组内,这实质上与层规范化(Layer Normalization)类似。

  2. 规范化:对于每个分组内的特征,GroupNorm 计算每个分组的均值和方差,并用这些统计数据来规范化分组内的特征。

  3. 独立于批量大小:与批量规范化不同,GroupNorm 的性能不依赖于批量大小,因为它是对每个样本独立计算的。这使得它在批量大小变化或很小的时候非常有效。

为什么使用 Group Normalization:

Group Normalization 是由 Yuxin Wu 和 Kaiming He 在 2018 年提出的,旨在克服批量规范化在小批量数据上的限制。在实际应用中,批量规范化依赖于较大的批量大小来计算精确的均值和方差,这在资源受限或需要使用小批量的情况下可能不是最优选择。相比之下,GroupNorm 通过对特征通道进行分组,使得每个样本独立于其他样本进行规范化,从而提供了更加稳定的训练过程。

在神经网络模型中,尤其是深度学习模型,规范化技术是关键的组成部分,因为它们有助于稳定训练过程,加快收敛速度,改善模型性能。

相关推荐
湫兮之风21 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
Christo31 天前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823401 天前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT1 天前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
dlraba8021 天前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE1 天前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
小憩-1 天前
【机器学习】吴恩达机器学习笔记
人工智能·笔记·机器学习
却道天凉_好个秋1 天前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ1 天前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
THMAIL1 天前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn