Group normalization是什么

在您提供的代码中,使用了 nn.GroupNorm 来创建一个规范化层。GroupNorm 是一种规范化技术,与批量规范化(Batch Normalization)和层规范化(Layer Normalization)相似,但有一些关键的区别。

Group Normalization(组规范化)的工作原理如下:

  1. 分组 :它将输入的特征(或通道)分成若干组。在 nn.GroupNorm(1, dim) 这行代码中,1 指的是分组数量,这里分为一组意味着所有的特征通道都在同一组内,这实质上与层规范化(Layer Normalization)类似。

  2. 规范化:对于每个分组内的特征,GroupNorm 计算每个分组的均值和方差,并用这些统计数据来规范化分组内的特征。

  3. 独立于批量大小:与批量规范化不同,GroupNorm 的性能不依赖于批量大小,因为它是对每个样本独立计算的。这使得它在批量大小变化或很小的时候非常有效。

为什么使用 Group Normalization:

Group Normalization 是由 Yuxin Wu 和 Kaiming He 在 2018 年提出的,旨在克服批量规范化在小批量数据上的限制。在实际应用中,批量规范化依赖于较大的批量大小来计算精确的均值和方差,这在资源受限或需要使用小批量的情况下可能不是最优选择。相比之下,GroupNorm 通过对特征通道进行分组,使得每个样本独立于其他样本进行规范化,从而提供了更加稳定的训练过程。

在神经网络模型中,尤其是深度学习模型,规范化技术是关键的组成部分,因为它们有助于稳定训练过程,加快收敛速度,改善模型性能。

相关推荐
重生之我要成为代码大佬2 分钟前
深度学习1-安装pytorch(无独立显卡版本)
人工智能·pytorch·深度学习·机器学习
seasonsyy7 分钟前
密码学领域的“三大顶会” & IACR网站简介
人工智能·密码学
Lian_Ge_Blog26 分钟前
微调方法学习总结(万字长文!)
人工智能·深度学习
水月wwww1 小时前
【深度学习】循环神经网络实现文本预测生成
人工智能·rnn·深度学习·gru·lstm·循环神经网络·文本续写
ASD123asfadxv1 小时前
齿轮端面缺陷检测与分类_DINO-4Scale实现与训练_1
人工智能·分类·数据挖掘
汗流浃背了吧,老弟!1 小时前
SFT(监督式微调)
人工智能
zl_vslam1 小时前
SLAM中的非线性优-3D图优化之相对位姿Between Factor位姿图优化(十三)
人工智能·算法·计算机视觉·3d
Xy-unu1 小时前
Analog optical computer for AI inference and combinatorial optimization
论文阅读·人工智能
小马过河R1 小时前
混元世界模型1.5架构原理初探
人工智能·语言模型·架构·nlp