Group normalization是什么

在您提供的代码中,使用了 nn.GroupNorm 来创建一个规范化层。GroupNorm 是一种规范化技术,与批量规范化(Batch Normalization)和层规范化(Layer Normalization)相似,但有一些关键的区别。

Group Normalization(组规范化)的工作原理如下:

  1. 分组 :它将输入的特征(或通道)分成若干组。在 nn.GroupNorm(1, dim) 这行代码中,1 指的是分组数量,这里分为一组意味着所有的特征通道都在同一组内,这实质上与层规范化(Layer Normalization)类似。

  2. 规范化:对于每个分组内的特征,GroupNorm 计算每个分组的均值和方差,并用这些统计数据来规范化分组内的特征。

  3. 独立于批量大小:与批量规范化不同,GroupNorm 的性能不依赖于批量大小,因为它是对每个样本独立计算的。这使得它在批量大小变化或很小的时候非常有效。

为什么使用 Group Normalization:

Group Normalization 是由 Yuxin Wu 和 Kaiming He 在 2018 年提出的,旨在克服批量规范化在小批量数据上的限制。在实际应用中,批量规范化依赖于较大的批量大小来计算精确的均值和方差,这在资源受限或需要使用小批量的情况下可能不是最优选择。相比之下,GroupNorm 通过对特征通道进行分组,使得每个样本独立于其他样本进行规范化,从而提供了更加稳定的训练过程。

在神经网络模型中,尤其是深度学习模型,规范化技术是关键的组成部分,因为它们有助于稳定训练过程,加快收敛速度,改善模型性能。

相关推荐
喏喏心12 分钟前
深度强化学习:价值迭代与Bellman方程实践
人工智能·python·学习·机器学习
阿杰学AI13 分钟前
AI核心知识48——大语言模型之Synthetic Data(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·合成数据·synthetic data·模型崩溃
陈天伟教授17 分钟前
人工智能应用-机器视觉:人脸识别(6)深度神经网络方法
人工智能·神经网络·dnn
千匠网络35 分钟前
S2B供应链平台:优化资源配置,推动产业升级
大数据·人工智能·产品运营·供应链·s2b
JERRY. LIU1 小时前
大脑各组织类型及其电磁特性
人工智能·神经网络·计算机视觉
l木本I1 小时前
uv 技术详解
人工智能·python·深度学习·机器学习·uv
通义灵码1 小时前
在 IDEA 里用 AI 写完两个 Java 全栈功能,花了 7 分钟
人工智能·ai编程·qoder
AI营销快线1 小时前
AI如何每日自动生成大量高质量营销素材?
大数据·人工智能
元智启1 小时前
企业 AI 智能体:零代码落地指南与多场景实操案例
人工智能
xiaoxiaoxiaolll1 小时前
智能计算模拟:第一性原理+分子动力学+机器学习
人工智能·机器学习