Group normalization是什么

在您提供的代码中,使用了 nn.GroupNorm 来创建一个规范化层。GroupNorm 是一种规范化技术,与批量规范化(Batch Normalization)和层规范化(Layer Normalization)相似,但有一些关键的区别。

Group Normalization(组规范化)的工作原理如下:

  1. 分组 :它将输入的特征(或通道)分成若干组。在 nn.GroupNorm(1, dim) 这行代码中,1 指的是分组数量,这里分为一组意味着所有的特征通道都在同一组内,这实质上与层规范化(Layer Normalization)类似。

  2. 规范化:对于每个分组内的特征,GroupNorm 计算每个分组的均值和方差,并用这些统计数据来规范化分组内的特征。

  3. 独立于批量大小:与批量规范化不同,GroupNorm 的性能不依赖于批量大小,因为它是对每个样本独立计算的。这使得它在批量大小变化或很小的时候非常有效。

为什么使用 Group Normalization:

Group Normalization 是由 Yuxin Wu 和 Kaiming He 在 2018 年提出的,旨在克服批量规范化在小批量数据上的限制。在实际应用中,批量规范化依赖于较大的批量大小来计算精确的均值和方差,这在资源受限或需要使用小批量的情况下可能不是最优选择。相比之下,GroupNorm 通过对特征通道进行分组,使得每个样本独立于其他样本进行规范化,从而提供了更加稳定的训练过程。

在神经网络模型中,尤其是深度学习模型,规范化技术是关键的组成部分,因为它们有助于稳定训练过程,加快收敛速度,改善模型性能。

相关推荐
余俊晖1 分钟前
多模态视觉语言模型增强原生分辨率继续预训练方法-COMP架构及训练方法
人工智能·语言模型·自然语言处理
运维@小兵13 分钟前
使用Spring-ai实现同步响应和流式响应
java·人工智能·spring-ai·ai流式响应
玩具猴_wjh14 分钟前
线性规划核心知识点
人工智能·机器学习
科学最TOP20 分钟前
IJCAI25|如何平衡文本与时序信息的融合适配?
人工智能·深度学习·神经网络·机器学习·时间序列
maycho12333 分钟前
探索锂电池主动均衡仿真:从开关电容到多种电路的奇妙之旅
人工智能
余俊晖33 分钟前
多模态文档智能解析模型进展-英伟达NVIDIA-Nemotron-Parse-v1.1
人工智能·ocr·多模态
南太湖小蚂蚁39 分钟前
通过TRAE和LLM实现电影数据查询和分析
人工智能
双翌视觉1 小时前
机器视觉赋能平板电脑OCA真空全贴合,精度、效率与智能化的三重飞跃
人工智能·机器学习·电脑
CareyWYR1 小时前
AI 把技术门槛踩碎,我们拿什么作为护城河?
人工智能
mgsky11 小时前
【插件推荐】Chrome类浏览器AI分组插件
人工智能·chrome