关于torch.backends.deterministic和torch.backends.cudnn.benchmark

TLDR:这是个关于torch.backends.cudnn设置的问题,不同组合的torch.backends.deterministic和torch.backends.cudnn.benchmark会产生不一样的结果,其中最快的组合(deterministic = False ,benchmark = True)比最慢的组合(deterministic = True ,benchmark = False)大约快了30倍。

现在先记录下方便以后有想法有能力了再总结回顾。

在跑BEAT的时候,有一处代码很好玩,other_tools.set_random_seed()

我加了点注释的代码如下:

python 复制代码
def set_random_seed(args):
    os.environ['PYTHONHASHSEED'] = str(args.random_seed)
    random.seed(args.random_seed)
    np.random.seed(args.random_seed)
    torch.manual_seed(args.random_seed)
    torch.cuda.manual_seed_all(args.random_seed)
    torch.cuda.manual_seed(args.random_seed)
    ## pay attention ,the below is training speed difference ,in camn:
    ## if set deterministic = True  ,benchmark = True ,it will cost almost 50-60 seconds for 10its
    ## if set deterministic = False ,benchmark = True ,it will cost almost 1-2 seconds for 10its
    ## if set deterministic = True  ,benchmark = False,it will cost 58 seconds for 10its
    ## if set deterministic = False  ,benchmark = False,it will cost almost 4-5 seconds for 10its
    torch.backends.cudnn.deterministic = args.deterministic #default: False
    torch.backends.cudnn.benchmark = args.benchmark         #default: False
    torch.backends.cudnn.enabled = args.cudnn_enabled       #default: True

只不过很有点意外的是当deterministic = True ,benchmark = True的时候居然这么慢,我起初以为设置好了benchmark=True后torch框架会自动选个最快的卷积算法,后续deterministic = True让这个卷积算法每次返回都是这个固定最快的。

上面是我以为的,下面根据结果(在注释的代码中)来分析

deterministic = True ,benchmark = True的情况,的确还是会选下卷积算法,比如把benchmark在比如设置为False的时候每次运行时间都是固定的,设置为True的时候还是会有点时间上的小波动,可见的确是选了下卷积的算法造成了结果的差异。当然具体怎么选的我暂且就不知道了,当然,选取最快的情况deterministic = False ,benchmark = True会有什么意向不到的结果我暂且也不清楚,网上很多说选取deterministic = True ,benchmark = False是为了保持结果的可复现性,我感觉这很扯就是,波动理应当极小极小(当然这是我目前的偏见)。

相关推荐
Hylan_J1 小时前
【VSCode】MicroPython环境配置
ide·vscode·python·编辑器
莫忘初心丶2 小时前
在 Ubuntu 22 上使用 Gunicorn 启动 Flask 应用程序
python·ubuntu·flask·gunicorn
失败尽常态5234 小时前
用Python实现Excel数据同步到飞书文档
python·excel·飞书
2501_904447744 小时前
OPPO发布新型折叠屏手机 起售价8999
python·智能手机·django·virtualenv·pygame
青龙小码农4 小时前
yum报错:bash: /usr/bin/yum: /usr/bin/python: 坏的解释器:没有那个文件或目录
开发语言·python·bash·liunx
大数据追光猿5 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Leuanghing5 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
xinxiyinhe6 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
诸神缄默不语7 小时前
如何用Python 3自动打开exe程序
python·os·subprocess·python 3
橘子师兄7 小时前
分页功能组件开发
数据库·python·django