[跑代码]BK-SDM: A Lightweight, Fast, and Cheap Version of Stable Diffusion

Installation(下载代码-装环境)

复制代码
conda create -n bk-sdm python=3.8
conda activate bk-sdm
git clone https://github.com/Nota-NetsPresso/BK-SDM.git
cd BK-SDM
pip install -r requirements.txt
Note on the torch versions we've used
  • torch 1.13.1 for MS-COCO evaluation & DreamBooth finetuning on a single 24GB RTX3090

  • torch 2.0.1 for KD pretraining on a single 80GB A10

    火炬2.0.1在单个80GB A100上进行KD预训练

    • 如果A100上总批大小为256的预训练导致gpu内存不足,请检查torch版本并考虑升级到torch>2.0.0。
      我的版本也是torch2.0.1 单个A100(80G)理论上吃的下256batch

小的例子

PNDM采样器 50步去噪声

等效代码(仅修改SD-v1.4的U-Net,同时保留其文本编码器和图像解码器):

Distillation Pretraining

Our code was based on train_text_to_image.py of Diffusers 0.15.0.dev0. To access the latest version, use this link.

BK-SDM的diffusers版本0.15
我的diffusers版本比较高0.24.0

检测是否能够训练(先下载数据集get_laion_data.sh再运行代码kd_train_toy.sh)

1 一个玩具数据集(11K的img-txt对)下载到。

python 复制代码
bash scripts/get_laion_data.sh preprocessed_11k

/data/laion_aes/preprocessed_11k (1.7GB in tar.gz;1.8GB数据文件夹)。
get_laion_data.sh

需要修改,实际就是下载这三个数据集,我自行下载

python 复制代码
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_11k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_212k.tar.gz
# https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/preprocessed_2256k.tar.gz

我修改后下载文件名 https://... .../preprocessed_11k.tar.gz直接粘贴到网址里面也可以下载
wget S3_URL -0 FILe_PATH

S3_URL 就是这个网址 FILe_PATH 就是下载路径./data/laion_aes/preprocessed_11k

bash 复制代码
DATA_TYPE=$"preprocessed_11k"  # {preprocessed_11k, preprocessed_212k, preprocessed_2256k}
FILE_NAME="${DATA_TYPE}.tar.gz"
 

DATA_DIR="./data/laion_aes/"
FILE_UNZIP_DIR="${DATA_DIR}${DATA_TYPE}"
FILE_PATH="${DATA_DIR}${FILE_NAME}"

if [ "$DATA_TYPE" = "preprocessed_11k" ] || [ "$DATA_TYPE" = "preprocessed_212k" ]; then
    echo "-> preprocessed_11k or 212k"
    S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.5plus/${FILE_NAME}"
elif [ "$DATA_TYPE" = "preprocessed_2256k" ]; then
    S3_URL="https://netspresso-research-code-release.s3.us-east-2.amazonaws.com/data/improved_aesthetics_6.25plus/${FILE_NAME}"
else
    echo "Something wrong in data folder name"
    exit
fi

wget $S3_URL -O $FILE_PATH
tar -xvzf $FILE_PATH -C $DATA_DIR
echo "downloaded to ${FILE_UNZIP_DIR}"

2 一个小脚本可以用来验证代码的可执行性,并找到与你的GPU匹配的批处理大小。

批量大小为8 (=4×2),训练BK-SDM-Base 20次迭代大约需要5分钟和22GB的GPU内存。

python 复制代码
bash scripts/kd_train_toy.sh
bash 复制代码
MODEL_NAME="CompVis/stable-diffusion-v1-4"
TRAIN_DATA_DIR="./data/laion_aes/preprocessed_11k" # please adjust it if needed
UNET_CONFIG_PATH="./src/unet_config"

UNET_NAME="bk_small" # option: ["bk_base", "bk_small", "bk_tiny"]
OUTPUT_DIR="./results/toy_"$UNET_NAME # please adjust it if needed

BATCH_SIZE=2
GRAD_ACCUMULATION=4

StartTime=$(date +%s)

CUDA_VISIBLE_DEVICES=1 accelerate launch src/kd_train_text_to_image.py \
  --pretrained_model_name_or_path $MODEL_NAME \
  --train_data_dir $TRAIN_DATA_DIR\
  --use_ema \
  --resolution 512 --center_crop --random_flip \
  --train_batch_size $BATCH_SIZE \
  --gradient_checkpointing \
  --mixed_precision="fp16" \
  --learning_rate 5e-05 \
  --max_grad_norm 1 \
  --lr_scheduler="constant" --lr_warmup_steps=0 \
  --report_to="all" \
  --max_train_steps=20 \
  --seed 1234 \
  --gradient_accumulation_steps $GRAD_ACCUMULATION \
  --checkpointing_steps 5 \
  --valid_steps 5 \
  --lambda_sd 1.0 --lambda_kd_output 1.0 --lambda_kd_feat 1.0 \
  --use_copy_weight_from_teacher \
  --unet_config_path $UNET_CONFIG_PATH --unet_config_name $UNET_NAME \
  --output_dir $OUTPUT_DIR


EndTime=$(date +%s)
echo "** KD training takes $(($EndTime - $StartTime)) seconds."

单GPU训练BK-SDM{Base, Small, Tiny}-0.22M数据训练

bash 复制代码
bash scripts/get_laion_data.sh preprocessed_212k
bash scripts/kd_train.sh

1 下载数据集preprocessed_212k

2 训练kd_train.sh

(256batch 训练BD-SM-Base 50K轮次需要300hours/53G单卡)

(64batch 训练BD-SM-Base 50K轮次需要60hours/28G单卡) 不理解?

单GPU训练BK-SDM{Base, Small, Tiny}-2.3M数据训练

相关推荐
_妲己1 天前
SD的细分功能包括重绘,图像处理、放大等扩散模型应用
人工智能·python·深度学习·机器学习·stable diffusion·comfyui·ai工作流
二院大蛙3 天前
Stable Diffusion 3.5 FP8在农业无人机航拍模拟图中的地形还原精度
stable diffusion· fp8· 农业无人机
或困3 天前
Stable Diffusion 3.5 FP8镜像支持灰度检测与异常报警
stable diffusion·灰度发布·fp8量化
沉默的大羚羊3 天前
Stable Diffusion 3.5 FP8模型可用于旅游宣传海报制作
stable diffusion·文生图·fp8
BOBO爱吃菠萝3 天前
Stable Diffusion 3.5 FP8镜像自动化部署脚本发布
stable diffusion·量化·fp8
九章云极AladdinEdu3 天前
项目分享|SD-Trainer:Stable Diffusion 训练集成工具
stable diffusion·端到端学习·高斯泼溅·3d场景分割·物体级代码本·2d到3d提升
qq_420443273 天前
AMD显卡在windows中通过WSL安装使用stable diffusion(WebUI和ComfyUI)
linux·windows·ubuntu·stable diffusion·wsl
网安入门学习3 天前
2025年AIGC人才需求报告:从招聘数据看行业趋势与技能要求
人工智能·windows·ai作画·stable diffusion·aigc
ai_xiaogui3 天前
Stable Diffusion Web UI 整合包一键安装教程:Windows/Mac零基础部署AI绘画工具
人工智能·ai作画·stable diffusion·一键整合包·ai生图神器·ai生图和动作迁移
人工智能AI技术4 天前
【SD教程】提示词
人工智能·stable diffusion·aigc·ai绘画