数据采集
日志数据(文件)到Kafka
自己写个程序模拟一些用户的行为数据,这些数据存在一个文件夹中。
接着使用flume监控采集这些文件,然后发送给kafka中待消费。
1、flume采集配置文件
监控文件将数据发给kafka的flume配置文件:
bash
#定义组件
a1.sources = r1
a1.channels = c1
#配置source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.gmall.flume.interceptor.ETLInterceptor$Builder
#配置channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = 192.168.10.100:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false
#组装
a1.sources.r1.channels = c1
a1.sources.r1.channels = c1
这边设置parseAsFlumeEvent = false后,数据就不会以flume的事件event的形式传递,就没有head了,只有body数据,head虽然对这个离线案例有用,但是如果要弄实时数仓,flink也会到kafka中取数据,这时head对于实时的就没用了。所以这边设置成false,也能减少数据传输的大小。
2、拦截器过滤数据
在source和channel之间设置拦截器,做一个轻度的清洗。
编写Flume拦截器
(1)创建Maven工程flume-interceptor
(2)创建包:com.atguigu.gmall.flume.interceptor
(3)在pom.xml文件中添加如下配置
XML
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.62</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
(4)在com.atguigu.gmall.flume.utils包下创建JSONUtil类
java
package com.atguigu.gmall.flume.utils;
import com.alibaba.fastjson.JSONObject;
import com.alibaba.fastjson.JSONException;
public class JSONUtil {
/*
* 通过异常判断是否是json字符串
* 是:返回true 不是:返回false
* */
public static boolean isJSONValidate(String log){
try {
JSONObject.parseObject(log);
return true;
}catch (JSONException e){
return false;
}
}
}
(5)在com.atguigu.gmall.flume.interceptor包下创建ETLInterceptor类
java
package com.atguigu.gmall.flume.interceptor;
import com.atguigu.gmall.flume.utils.JSONUtil;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.StandardCharsets;
import java.util.Iterator;
import java.util.List;
public class ETLInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
//1、获取body当中的数据并转成字符串
byte[] body = event.getBody();
String log = new String(body, StandardCharsets.UTF_8);
//2、判断字符串是否是一个合法的json,是:返回当前event;不是:返回null
if (JSONUtil.isJSONValidate(log)) {
return event;
} else {
return null;
}
}
@Override
public List<Event> intercept(List<Event> list) {
Iterator<Event> iterator = list.iterator();
while (iterator.hasNext()){
Event next = iterator.next();
if(intercept(next)==null){
iterator.remove();
}
}
return list;
}
// a1.sources.r1.interceptors.i1.type 的值是这个的全类名
public static class Builder implements Interceptor.Builder{
@Override
public Interceptor build() {
return new ETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
@Override
public void close() {
}
}
(6)打包
(7)需要先将打好的包放入到flume的lib目录下:/opt/module/flume/lib文件夹下面。
3、启动flume采集验证
使用上面的配置文件启动flume监控,,
bash
bin/flume-ng agent -n a1 -c conf/ -f job/file_to_kafka.conf -Dflume.root.logger=info,console
接着创建一个Kafka消费者消费topic_log主题
bash
bin/kafka-console-consumer.sh --bootstrap-server 192.168.10.100:9092 --topic topic_log
然后往文件中追加数据看能不能消费到。
看到完整的json被消费了,不完整的json被拦截器过滤了
日志数据(文件)同步给Hadoop的hdfs
现在数据已经在Kafka了,下一步就是要将数据发给Hadoop存储,并且要按天进行分区。
按照规划,该Flume需将Kafka中topic_log的数据发往HDFS。并且对每天产生的用户行为日志进行区分,将不同天的数据发往HDFS不同天的路径。
1、创建flume消费者
创建flume消费者从Kafka中消费数据发给hdfs。
目前的数据位于kafka中,原本可以直接用下面的这种flume架构,但由于flume的上游将数据存到kafka的时候,只存了body,这边将数据发给hdfs中需要按照时间落盘,所以需要拦截器加上head,给每条数据在head中添加时间信息,但是拦截器需要有flume source才能生效。所以这种架构就不行。需要使用带有source的架构。
带有source的架构模式
拦截器:
java
// 必须在在header中添加名为timestamp字段的时间戳
@Override
public Event intercept(Event event) {
Map<String, String> headers = event.getHeaders();
byte[] body = event.getBody();
String log = new String(body, StandardCharsets.UTF_8);
String ts = JSONObject.parseObject(log).getString("ts");
headers.put("timestamp",ts);
return event;
}
flume配置文件:
javascript
#定义组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1
#配置source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 2000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = 192.168.10.100:9092
a1.sources.r1.kafka.topics=topic_log
a1.sources.r1.kafka.consumer.group.id = topic_log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.gmall.flume.interceptor.TimestampInterceptor$Builder
#配置channel
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior1
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior1
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6
#配置sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log
a1.sinks.k1.hdfs.round = false
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
#控制输出文件类型
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip
#组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
1、数据位于kafka中source用kafka source
kafka source其实就是一个kafka消费者,定义消费者组id,防止使用默认的组id导致消费不到数据,如果有两个消费者都消费toppic_id主题,同一个消费者组id一样的只有一个消费者能消费到。
a1.sources.r1.batchSize = 2000,一次批量写入channel通道的最大消息数。
a1.sources.r1.batchDurationMillis = 2000,若没达到一批次的消息数量,达到这个时间了也将消息都发给channel通道。这时间设置成产生2000条大概花费的时间。
2、Channel用file channel,我猜测:是由于要发送给hdfs,又因为hdfs是文件系统
通过配置dataDirs指向多个路径,每个路径对应不同的硬盘,flume就可以将来自Source的数据写到不同的目录硬盘,但是这边是单机,就设置了一个,可以增大Flume吞吐量。
a1.channels.c1.maxFileSize = 2146435071,file channel数据存储在文件中, 单个日志文件的最大大小(以字节计)。
a1.channels.c1.capacity = 1000000,file channel的最大容量 1000000条
a1.channels.c1.keep-alive = 6
回滚后,source要重新到文件或者kafka中取这2000条数据
3、数据发给HDFS所以sink用hdfs sink
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
path中包含时间的转移序列,用于将不同时间的数据放到不同的路径。
基于以上hdfs.rollInterval=10:hdfs当达到10秒后滚动形成文件
hdfs.rollSize=134217728:hdfs数据当达到128M形成文件
hdfs.rollCount =0:event事件条数达到多少条形成文件
几个参数综合作用,效果如下:
(1)文件在达到128M时会滚动生成新文件
(2)文件创建超3600秒时会滚动生成新文件
还没达到形成新文件的时候,是以.tmp结尾存在的,这个时候是没用的。
2、启动flume消费者
进入flume的家目录下执行:
bash
bin/flume-ng agent -n a1 -c conf/ -f job/kafka_to_hdfs_log.conf -Dflume.root.logger=info,console
效果:
效果分析:文件一有新的日志数据写入,就会被flume采集到kafka的topic_log主题中,就会被flume消费者发到hdfs中的路径文件中。这样会有几个问题:
一有数据就发给hdfs中形成一个文件,就会产生大量的小文件,上面每个文件就几百B大小。 **元数据层面:**每个小文件都有一份元数据,其中包括文件路径,文件名,所有者,所属组,权限,创建时间等,这些信息都保存在Namenode内存中。所以小文件过多,会占用Namenode服务器大量内存,影响Namenode性能和使用寿命
**计算层面:**默认情况下MR会对每个小文件启用一个Map任务计算,非常影响计算性能。同时也影响磁盘寻址时间。
数据漂移问题:
加入拦截器解决数据漂移、修改参数解决小文件问题后:
可以看到现在起码不是几十B了,因为现在时间10秒就形成新文件,到时候可以根据128M生成的时间设置。
现在这条数据链路已经打通了。
=====================
业务数据(MySQL)到HDFS
在离线数仓中,业务数据是很重要的一个来源,为后续的计算提供数据来源,离线数仓一般一天采集同步一次业务数据到离线数仓中,供后续使用(存储、计算、处理、分析)。
1、数据同步方案
同步的策略有增量同步(效率好、逻辑复杂)和全量同步(数据量大变化少时效率低、逻辑简单)。增量同步就是只将有变更的数据同步过来;而全量同步是每次都将全表同步过来,覆盖原有的数据。一般而言一个数据库中:大表变化多全量、大表变化少增量、小表都用全量。
|--------------|-----------------|-------------------------------------------------------------------|
| 同步策略 | 优点 | 缺点 |
| 全量同步 | 逻辑简单 | 在某些情况下效率较低。例如某张表数据量较大,但是每天数据的变化比例很低,若对其采用每日全量同步,则会重复同步和存储大量相同的数据。 |
| 增量同步 | 效率高,无需同步和存储重复数据 | 逻辑复杂,需要将每日的新增及变化数据同原来的数据进行整合,才能使用 |
全量同步通常使用DataX、Sqoop等基于查询的离线同步工具。而增量同步既可以使用DataX、Sqoop等工具,也可使用Maxwell、Canal等工具,下面对增量同步不同方案进行简要对比。
|-----------------|-----------------------------------------------------------------------------------|-----------------------------------------|
| 增量同步方案 | DataX /Sqoop | Maxwell/ C anal |
| 对数据库的要求 | 原理是基于查询,故若想通过select查询获取新增及变化数据,就要求数据表中存在create_time、update_time字段,然后根据这些字段获取变更数据。 | 要求数据库记录变更操作,例如MySQL需开启binlog。 |
| 数据的中间状态 | 由于是离线批量同步,故若一条数据在一天中变化多次,该方案只能获取最后一个状态,中间状态无法获取。 | 由于是实时获取所有的数据变更操作,所以可以获取变更数据的所有中间状态。 |
2、各个表同步策略
一般而言一个数据库中:大表变化多全量、大表变化少增量、小表都用全量。
2.1、部署DataX全量同步数据
使用DataX全量同步数据给HDFS。
1、正常步骤需要为每个全量同步的表各自创建一个DataX任务的json文件,每个表都由公主和王子来写json文件,实在是有点麻烦,直接搞个脚本自动生成(如果报错把注释去掉):
python
# ecoding=utf-8
import json
import getopt
import os
import sys
import MySQLdb
#MySQL相关配置,需根据实际情况作出修改
mysql_host = "hadoop102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "000000"
#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "hadoop102"
hdfs_nn_port = "8020"
#生成DataX配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/module/datax/job/import"
def get_connection():
return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)
def get_mysql_meta(database, table):
connection = get_connection()
cursor = connection.cursor()
sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
cursor.execute(sql, [database, table])
fetchall = cursor.fetchall()
cursor.close()
connection.close()
return fetchall
def get_mysql_columns(database, table):
return map(lambda x: x[0], get_mysql_meta(database, table))
def get_hive_columns(database, table):
def type_mapping(mysql_type):
mappings = {
"bigint": "bigint",
"int": "bigint",
"smallint": "bigint",
"tinyint": "bigint",
"decimal": "string",
"double": "double",
"float": "float",
"binary": "string",
"char": "string",
"varchar": "string",
"datetime": "string",
"time": "string",
"timestamp": "string",
"date": "string",
"text": "string"
}
return mappings[mysql_type]
meta = get_mysql_meta(database, table)
return map(lambda x: {"name": x[0], "type": type_mapping(x[1].lower())}, meta)
def generate_json(source_database, source_table):
job = {
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": mysql_user,
"password": mysql_passwd,
"column": get_mysql_columns(source_database, source_table),
"splitPk": "",
"connection": [{
"table": [source_table],
"jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database]
}]
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
"fileType": "text",
"path": "${targetdir}",
"fileName": source_table,
"column": get_hive_columns(source_database, source_table),
"writeMode": "append",
"fieldDelimiter": "\t",
"compress": "gzip"
}
}
}]
}
}
if not os.path.exists(output_path):
os.makedirs(output_path)
with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:
json.dump(job, f)
def main(args):
source_database = ""
source_table = ""
options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])
for opt_name, opt_value in options:
if opt_name in ('-d', '--sourcedb'):
source_database = opt_value
if opt_name in ('-t', '--sourcetbl'):
source_table = opt_value
generate_json(source_database, source_table)
if __name__ == '__main__':
main(sys.argv[1:])
注:由于目标路径包含一层日期,用于对不同天的数据加以区分,故path参数并未写死,需在提交任务时通过参数动态传入,参数名称为target dir
2、使用方式:
安装Python Mysql驱动由于需要使用Python访问Mysql数据库,故需安装驱动,命令如下:
bash
sudo yum install -y MySQL-python
脚本使用说明
bash
python gen_import_config.py -d database -t table
通过-d传入数据库名,-t传入表名,执行上述命令即可生成该表的DataX同步配置文件。
3、每个表的json文件都要这样执行也比较,直接再弄个脚本为每个表生成:
bash
#!/bin/bash
python ~/bin/gen_import_config.py -d gmall -t activity_info
python ~/bin/gen_import_config.py -d gmall -t activity_rule
python ~/bin/gen_import_config.py -d gmall -t base_category1
python ~/bin/gen_import_config.py -d gmall -t base_category2
python ~/bin/gen_import_config.py -d gmall -t base_category3
python ~/bin/gen_import_config.py -d gmall -t base_dic
python ~/bin/gen_import_config.py -d gmall -t base_province
python ~/bin/gen_import_config.py -d gmall -t base_region
python ~/bin/gen_import_config.py -d gmall -t base_trademark
python ~/bin/gen_import_config.py -d gmall -t cart_info
python ~/bin/gen_import_config.py -d gmall -t coupon_info
python ~/bin/gen_import_config.py -d gmall -t sku_attr_value
python ~/bin/gen_import_config.py -d gmall -t sku_info
python ~/bin/gen_import_config.py -d gmall -t sku_sale_attr_value
python ~/bin/gen_import_config.py -d gmall -t spu_info
4、测试生产的配置文件是否可用
由于DataX同步任务要求目标路径提前存在,故需手动创建路径,当前activity_info表的目标路径应为/origin_data/gmall/db/activity_info_full/2020-06-14。命令不行可以手动创建。
bash
hadoop fs -mkdir /origin_data/gmall/db/activity_info_full/2020-06-14
执行DataX同步命令
$ python /opt/module/datax/bin/datax.py -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-14" /opt/module/datax/job/import/gmall.activity_info.json
bash
python /opt/module/datax/bin/datax.py -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-14" /opt/module/datax/job/import/gmall.activity_info.json
5、观察结果
观察HFDS目标路径是否出现数据。
6、全量同步脚本
bash
#!/bin/bash
DATAX_HOME=/opt/module/datax
# 如果传入日期则do_date等于传入的日期,否则等于前一天日期
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
#处理目标路径,此处的处理逻辑是,如果目标路径不存在,则创建;若存在,则清空,目的是保证同步任务可重复执行
handle_targetdir() {
hadoop fs -test -e $1
if [[ $? -eq 1 ]]; then
echo "路径$1不存在,正在创建......"
hadoop fs -mkdir -p $1
else
echo "路径$1已经存在"
fs_count=$(hadoop fs -count $1)
content_size=$(echo $fs_count | awk '{print $3}')
if [[ $content_size -eq 0 ]]; then
echo "路径$1为空"
else
echo "路径$1不为空,正在清空......"
hadoop fs -rm -r -f $1/*
fi
fi
}
#数据同步
import_data() {
datax_config=$1
target_dir=$2
# 先在HDFS中创建目录
handle_targetdir $target_dir
python $DATAX_HOME/bin/datax.py -p"-Dtargetdir=$target_dir" $datax_config
}
case $1 in
"activity_info")
import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
;;
"activity_rule")
import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
;;
"base_category1")
import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
;;
"base_category2")
import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
;;
"base_category3")
import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
;;
"base_dic")
import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
;;
"base_province")
import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
;;
"base_region")
import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
;;
"base_trademark")
import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
;;
"cart_info")
import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
;;
"coupon_info")
import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
;;
"sku_attr_value")
import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
;;
"sku_info")
import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
;;
"sku_sale_attr_value")
import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
;;
"spu_info")
import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
;;
"all")
import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
;;
esac
使用方式:
bash
./mysql_to_hdfs_full.sh all 2023-10-25
all表示全量同步脚本设置的所有表,第二个参数是创建的文件夹时间,如果不传默认取前一天的时间,比如今天是2023年10月25日,则创建2023-10-24文件夹存放数据,生产环境中,都是凌晨1点多开始全量同步前面一天的数据。所以生产中第二个参数不传。
2.2、Maxwell增量同步数据
使用Maxwell增量同步业务数据到kafka,再由Flume采集到HDFS
1、创建一个Maxwell增量同步MySQL中需要增量同步的业务表,发送给kafka的topic_db主题
如果MySQL的端口不是3306,Maxwell的配置文件记得加上
mxw.sh start
2、由于有些表是全量同步,所以需要在MySQL的配置文件中将全量同步的表去掉bin_log
3、创建flume消费topic_db主题发送给hdfs
flume配置文件:
javascript
#定义组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1
#配置source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 2000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = 192.168.10.100:9092
a1.sources.r1.kafka.topics=topic_db
a1.sources.r1.kafka.consumer.group.id = topic_db
a1.sources.r1.interceptors = i1
a2.sources.r1.interceptors.i1.type = com.atguigu.gmall.flume.interceptor.TableNameTimestampInterceptor$Builder
#配置channel
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior2
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior2
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6
#配置sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/db/%{tableName}_inc/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = db
a1.sinks.k1.hdfs.round = false
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
#控制输出文件类型
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip
#组装
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = /origin_data/gmall/db/%{tableName}_inc/%Y-%m-%d
由于在hdfs中落盘的需要按照以上的格式,而%{tableName} 这种,hdfs会到event的头部中找tableName来解析,%Y-%m-%d会找timestamp的值解析。以下是一条event格式,但是如果不设置的话会按默认的时间。
bash
timestamp^R^M1698288936059^R^B{"database":"gmall","table":"comment_info","type":"insert","ts":1698288933,"xid":912,"commit":true,"data":{"id":1716761825009860616,"user_id":13,"nick_name":null,"head_img":null,"sku_id":12,"spu_id":25,"order_id":null,"appraise":null,"comment_txt":"æµ<8b>è¯<95>1219","create_time":null,"operate_time":null}}^Qib<8e>)^@^@^@^@^@^?^@^@^@^_^W^M^D^@^@^@^Q©^?äi<8b>^A^@^@^Yr^?äi<8b>^A^@^@^E^M^A^@^@^@^@^?^@^@^@$^W^M^B^@^@^@^Qª^?äi<8b>^A^@
以下是Maxwell增量同步MySQL的一条数据,其中ts字段需要个性化定制Maxwell才能生成,ts是当时监控到这条数据变更的时间,可以将这个时间设置给event的头部timestamp。
javascript
{
"database": "gmall",
"table": "comment_info",
"type": "insert",
"ts": 1698288933,
"xid": 912,
"commit": true,
"data": {
"id": 1716761825009860616,
"user_id": 13,
"nick_name": null,
"head_img": null,
"sku_id": 12,
"spu_id": 25,
"order_id": null,
"appraise": null,
"comment_txt": "æµ<8b>è¯<95>1219",
"create_time": null,
"operate_time": null
}
}
拦截器
java
// flume采集的每条数据 event
@Override
public Event intercept(Event event) {
Map<String, String> headers = event.getHeaders();
byte[] body = event.getBody();
String db = new String(body, StandardCharsets.UTF_8);
// 获取Maxwell输出的时间戳 单位是秒
Long ts = JSONObject.parseObject(db).getLong("ts");
String table = JSONObject.parseObject(db).getString("table");
// flume的hdfs sink解析需要 毫秒
headers.put("timestamp", String.valueOf(ts * 1000));
headers.put("tableName",table);
return event;
}
4、增量表首日全量
通常情况下,增量表需要在首日(首次)进行一次全量同步,后续每日再进行增量同步,首日全量同步可以使用Maxwell的bootstrap功能,方便起见,下面编写一个增量表首日全量同步脚本。
bash
#!/bin/bash
# 该脚本的作用是初始化所有的增量表,只需执行一次
MAXWELL_HOME=/opt/module/maxwell
import_data() {
$MAXWELL_HOME/bin/maxwell-bootstrap --database gmall --table $1 --config $MAXWELL_HOME/config.properties
}
case $1 in
"cart_info")
import_data cart_info
;;
"comment_info")
import_data comment_info
;;
"coupon_use")
import_data coupon_use
;;
"favor_info")
import_data favor_info
;;
"order_detail")
import_data order_detail
;;
"order_detail_activity")
import_data order_detail_activity
;;
"order_detail_coupon")
import_data order_detail_coupon
;;
"order_info")
import_data order_info
;;
"order_refund_info")
import_data order_refund_info
;;
"order_status_log")
import_data order_status_log
;;
"payment_info")
import_data payment_info
;;
"refund_payment")
import_data refund_payment
;;
"user_info")
import_data user_info
;;
"all")
import_data cart_info
import_data comment_info
import_data coupon_use
import_data favor_info
import_data order_detail
import_data order_detail_activity
import_data order_detail_coupon
import_data order_info
import_data order_refund_info
import_data order_status_log
import_data payment_info
import_data refund_payment
import_data user_info
;;
esac
离线数仓环境准备
现在日志数据和业务数据都采集过来了,是位于hdfs的文件中,需要把数据加入到我们数据仓库中,第一步先加入到hive中。