python pyaudio对音频进行端点检测,检测出说话区间

python pyaudio对音频进行端点检测,检测出说话区间

主要采用过零率和语音能量来进行检测,并设置双阈值。

代码如下:

python 复制代码
# -*- coding: utf-8 -*-
import wave
import os
import matplotlib.pyplot as plt
import numpy as np


# 判断是否变号
def sgn(data):
    if data >= 0:
        return 1
    else:
        return 0


# 计算每一帧的能量,设定每 256 个采样点为一帧,一帧就是一个语音块
def calEnergy(wave_data):
    energy = []
    sum = 0
    for i in range(len(wave_data)):
        sum = sum + (int(wave_data[i]) * int(wave_data[i]))
        if (i + 1) % 256 == 0:
            energy.append(sum)
            sum = 0
        elif i == len(wave_data) - 1:
            energy.append(sum)

    return energy


# 计算过零率
def calZeroCrossingRate(wave_data):
    zeroCrossingRate = []
    sum = 0
    for i in range(len(wave_data)):
        # 判断当前索引 i 是否是 256 的倍数,为了避免从音频数据的开头和上一帧最后一个采样点计算过零率
        if i % 256 == 0:
            continue
        sum = sum + np.abs(sgn(wave_data[i]) - sgn(wave_data[i - 1]))
        if (i + 1) % 256 == 0:
            zeroCrossingRate.append(float(sum) / 255)
            sum = 0
        elif i == len(wave_data) - 1:
            zeroCrossingRate.append(float(sum) / 255)

    return zeroCrossingRate


"""
当使用双门限法进行语音端点检测时,可以按照以下步骤实现:
计算语音信号的短时能量和过零率。可以使用算法或库函数来计算短时能量和过零率。
初始化参数。设定较高和较低能量阈值、过零率阈值等参数。
根据能量阈值进行初步检测。遍历短时能量序列,当能量超过较高能量阈值时,标记为起始点;
当能量低于较低能量阈值时,标记为结束点。
根据过零率阈值进行进一步检测。遍历起始点和结束点之间的时间窗口,在时间窗口内计算过零率,
并判断是否超过过零率阈值。若超过阈值,说明该点为语音信号的起始或结束点;
若未超过阈值,说明该点为语音信号的过渡点。
根据检测到的起始和结束点,得到语音信号的分段结果。
"""


# 利用短时能量,短时过零率,使用双门限法进行端点检测
def endPointDetect(wave_data, energy, zeroCrossingRate):
    sum = 0
    energyAverage = 0
    # 短时能量平均数
    for en in energy:
        sum = sum + en
    energyAverage = sum / len(energy)
    #    print(energyAverage)

    # 首先计算语音前一段的静音部分的能量均值(前5帧)
    sum = 0
    for en in energy[:5]:
        sum = sum + en
    ML = sum / 5
    # 将能量均值的1/4作为MH
    MH = energyAverage / 4  # 较高的能量阈值
    # 将静音部分的能量均值和MH的平均数的1/4作为ML。
    ML = (ML + MH) / 4  # 较低的能量阈值

    # 计算前5帧的过零率
    sum = 0
    for zcr in zeroCrossingRate[:5]:
        sum = float(sum) + zcr
    Zs = sum / 5  # 过零率阈值

    A = []
    B = []
    C = []

    # 首先利用较大能量阈值 MH 进行初步检测
    flag = 0
    for i in range(len(energy)):
        if len(A) == 0 and flag == 0 and energy[i] > MH:
            A.append(i)
            flag = 1

        # 如果当前点与上一个浊音的结束点之间的距离大于阈值(这里设为21),则将当前点设为新的浊音的起始点
        elif flag == 0 and energy[i] > MH and i - 21 > A[len(A) - 1]:
            A.append(i)
            flag = 1

        # 如果当前能量超过 MH,但当前点与上一个浊音的结束点之间的距离小于等于阈值 21,则将上一个浊音的结束点舍弃
        elif flag == 0 and energy[i] > MH and i - 21 <= A[len(A) - 1]:
            A = A[:len(A) - 1]
            flag = 1

        # 拿到结束点
        if flag == 1 and energy[i] < MH:
            A.append(i)
            flag = 0

    print("较高能量阈值,计算后的浊音A:" + str(A))

    # 根据较低能量阈值,在基础 A 上增加一段语音
    for j in range(len(A)):
        i = A[j]
        if j % 2 == 1:  # 奇数下标为结束点
            while i < len(energy) and energy[i] > ML:
                i = i + 1
            B.append(i)
        else:  # 偶数下标为起始点
            while i > 0 and energy[i] > ML:
                i = i - 1
            B.append(i)

    print("较低能量阈值,增加一段语言B:" + str(B))

    # 利用过零率进行最后一步检测,过零率高表示活跃语音
    print(B)
    for j in range(len(B)):
        i = B[j]
        if j % 2 == 1:  # 奇数下标为结束点
            while i < len(zeroCrossingRate) and zeroCrossingRate[i] >= 3 * Zs:
                i = i + 1
            C.append(i)
        else:  # 偶数下标为起始点
            while i > 0 and zeroCrossingRate[i] >= 3 * Zs:
                i = i - 1
            C.append(i)

    print("过零率阈值,最终语音分段C:" + str(C))
    return C


f = wave.open("./output.wav", "rb")
# getparams() 一次性返回所有的WAV文件的格式信息
params = f.getparams()
# nframes 采样点数目 帧数
nchannels, sampwidth, framerate, nframes = params[:4]
# readframes() 按照采样点读取数据
str_data = f.readframes(nframes)  # str_data 是二进制字符串

# 以上可以直接写成 str_data = f.readframes(f.getnframes())

# 转成二字节数组形式(每个采样点占两个字节)
wave_data = np.fromstring(str_data, dtype=np.short)
f.close()

# 转成双声道
wave_data.shape = -1, 2
wave_data = wave_data.T

time = np.arange(0, nframes) * (1.0 / framerate)  # 每个采样点对应的时间,单位是 s
waveDate = wave_data[0]  # 提取一个声道的数据
print("采样点数目:" + str(len(waveDate)))  # 输出一个声道应为采样点数目
print("采样率:" + str(framerate))
plt.plot(waveDate)
plt.ylabel("voiceprint")
plt.xlabel("nframes")
plt.show()

minvalue = min(waveDate)
maxvalue = max(waveDate)
energy = calEnergy(waveDate)  # 每 256 为一帧,energy 为语音块的能量
plt.subplot(211)
plt.plot(energy)
plt.ylabel("energy")
plt.xlabel("frame")

# 保存 energy
with open("./energy/1_en.txt", "w") as f:
    for en in energy:
        f.write(str(en) + "\n")

zeroCrossingRate = calZeroCrossingRate(waveDate)
plt.subplot(212)
plt.plot(zeroCrossingRate)  # 同样是以帧为单位的过零率
plt.ylabel("zeroCrossingRate")
plt.xlabel("frame")
plt.show()

# 保存过零率
with open("./zero/1_zero.txt", "w") as f:
    for zcr in zeroCrossingRate:
        f.write(str(zcr) + "\n")

# 双门限法进行端点检测
N = endPointDetect(waveDate, energy, zeroCrossingRate)

plt.plot(waveDate)
for i in range(0,len(N),2):
    print(i)

    x = [N[i] * 256, N[i] * 256]  # * 256 放大到原来的采样点上
    x1 = [N[i+1] * 256, N[i+1] * 256]
    y = [minvalue, maxvalue]
    plt.plot(x, y, "-g")
    plt.plot(x1, y, "-r")
    plt.plot()
    plt.ylabel("voiceprint")
    plt.xlabel("nframes")
    
plt.show()

# 输出为 pcm 格式
with open("./corpus/1.pcm", "wb") as f:
    i = 0
    while i < len(N):
        for num in waveDate[N[i] * 256: N[i + 1] * 256]:
            f.write(num)
        i = i + 2

运行结果如下:

相关推荐
查理零世35 分钟前
保姆级讲解 python之zip()方法实现矩阵行列转置
python·算法·矩阵
刀客1231 小时前
python3+TensorFlow 2.x(四)反向传播
人工智能·python·tensorflow
sysu632 小时前
95.不同的二叉搜索树Ⅱ python
开发语言·数据结构·python·算法·leetcode·面试·深度优先
SsummerC2 小时前
【leetcode100】从前序与中序遍历序列构造二叉树
python·算法·leetcode
陌北v13 小时前
PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
人工智能·pytorch·python·深度学习·ctr
Мартин.3 小时前
[Meachines] [Easy] Bashed PHP Bash+Python计划任务权限提升
python·php·bash
码界筑梦坊3 小时前
基于Flask的旅游系统的设计与实现
python·flask·毕业设计·旅游
有Li4 小时前
2D 超声心动图视频到 3D 心脏形状重建的临床应用| 文献速递-医学影像人工智能进展
人工智能·3d·音视频
辞落山4 小时前
自定义数据集使用scikit-learn中的包实现线性回归方法对其进行拟合
python·线性回归·scikit-learn
XuanRanDev4 小时前
【音视频处理】FFmpeg for Windows 安装教程
windows·ffmpeg·音视频