基于AWS Serverless的Glue服务进行ETL(提取、转换和加载)数据分析(三)——serverless数据分析

3 serverless数据分析

大纲

  • [3 serverless数据分析](#3 serverless数据分析)
    • [3.1 创建Lambda](#3.1 创建Lambda)
    • [3.2 创建API Gateway](#3.2 创建API Gateway)
    • [3.3 结果](#3.3 结果)
    • [3.4 总结](#3.4 总结)

3.1 创建Lambda

在Lambda中,我们将使用python3作为代码语言。

步骤 图例
1、入口
2、创建(我们选择使用python3.7)
3、IAM权限(权限可信实体需要包括Lambda才能将角色绑定到Lambda上) 见下方"IAM可信实体描述"
4、指定处理函数(处理程序要为用户程序的入口)
5、添加层(层为我们的代码运行时的环境,并且,兼容运行时要包含上一步中的运行时环境)
6、代码(在此代码中使用了boto3来连接Athena,可自定义sql,使用方法请看官方文档) 见下方"Lambda代码"

IAM可信实体描述:

XML 复制代码
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": {
                "Service": "lambda.amazonaws.com"
            },
            "Action": "sts:AssumeRole"
        }
    ]
}

Lambda代码

python 复制代码
import boto3, os, json
import pandas as pd

from pyathena import connect
import time
REGION = "us-west-2"

# expected request: anomaly/{meter_id}?data_start={}&data_end={}&outlier_only={}
def lambda_handler(event, context):
    ATHENA_OUTPUT_BUCKET = "【待替换S3桶路径】/athena"
    DB_SCHEMA = "suzikuo_test_db"

    USE_WEATHER_DATA = 0
    pathParameter = event["pathParameters"]
    queryParameter = event["queryStringParameters"]
    METER_ID = pathParameter['meter_id']
    DATA_START = queryParameter['data_start']
    DATA_END = queryParameter['data_end']
    OUTLIER_ONLY = queryParameter['outlier_only']
    query = '''
    select * from "{}".reading_type_int
    where meter_id = '{}'
    and cast(reading_date_time as timestamp) >= timestamp '{}' and cast(reading_date_time as timestamp) < timestamp '{}'
    '''.format(DB_SCHEMA, METER_ID, DATA_START, DATA_END)

    athena = boto3.client('athena')
    response = athena.start_query_execution(
    QueryString=query,
    QueryExecutionContext={
        'Database': 'suzikuo_test_db'
    },
    ResultConfiguration={
        'OutputLocation': 's3://suzikuo-test-2022-8-4-s3/athena',
        'EncryptionConfiguration': {
            'EncryptionOption': 'SSE_S3'
        }
    }
    )
    while True:
        try:
            query_results = athena.get_query_results(
                QueryExecutionId=response['QueryExecutionId']
            )
            break
        except Exception as err:
            if 'Query has not yet finished' in str(err):
                time.sleep(3)
            else:
                raise(err)

    return query_results['ResultSet']['Rows']

3.2 创建API Gateway

使用API Gateway+Lambda 可轻松实现一个serverless架构。

步骤 图例
1、入口
2、API(我们使用的是Lambda,所以选HTTP API)
3、创建集成(指定要绑定的Lambda)
4、配置路由(指定路由要请求的集成(lambda))
5、一直下一步即可

3.3 结果

此案例只查询了某一ID的某个时间段内的数据

通过获取URI和参数,在Lambda中编写逻辑,可以实现我们对数据的任意操作。

3.4 总结

到此,我们已经完成了基于Glue ETL(提取、转换和加载)的serviceless 数据分析的全部过程了。在此案例中,我们使用到了AWS 服务中的Glue、S3、APIGateway、Lambda等服务实现了一个通过API访问的数据统计与分析接口。

相关推荐
陈燚_重生之又为程序员4 小时前
基于梧桐数据库的实时数据分析解决方案
数据库·数据挖掘·数据分析
kongxx8 小时前
AWS S3在客户端应用不能使用aws-sdk场景下的文件上传与下载
aws
kongxx8 小时前
AWS S3 JavaScript SDK(v3)常用操作
aws
Elastic 中国社区官方博客8 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
九河云8 小时前
如何选择适合的AWS EC2实例类型
服务器·云计算·aws
布说在见16 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Tianyanxiao17 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
FIT2CLOUD飞致云18 小时前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一
皓74119 小时前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
菜鸟的人工智能之路19 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗