每天五分钟计算机视觉:ImageNet大赛的世界冠军AlexNet模型

AlexNet模型

2012 Imagenet 比赛第一,Top5准确度超出第二10% ,它让人们认识到了深度学习技术的威力。比 LeNet更深,用多层小卷积层叠加替换大卷积层,就是说每一个卷积层的通道数小,不像LeNet一样每个卷积层的通道数很大。

AlexNet

一张227×227×3的图片作为输入,第一层我们使用 96 个11×11 的过滤器,步幅为 4,由于步幅是 4,因此尺寸缩小到 55×55,缩小了 4 倍左右。

然后用一个 3×3 的过滤器构建最大池化层, = 3,步幅为 2,卷积层尺寸缩小为 27×27×96。接着再执行一个 5×5 的卷积,padding 之后,输出是 27×27×276。

然后再次进行最大池化,尺寸缩小到 13×13。再执行一次 same 卷积,相同的 padding,得到的结果是 13×13×384,384个过滤器。再做一次 same 卷积,就像这样。

再做一次同样的操作,最后再进行一次最大池化,尺寸缩小到 6×6×256。

6×6×256 等于 9216,将其展开为 9216 个单元,然后是一些全连接层。

最后使用 softmax 函数输出识别的结果,看它究竟是 1000 个可能的对象中的哪一个。

AlexNet 包含约 6000 万个参数。当用于训练图像和数据集时,AlexNet 能够处理非常相似的基本构造模块,这些模块往往包含着大量的隐藏单元或数据,这一点 AlexNet 表现出色。AlexNet 比 LeNet 表现更为出色的另一个原因是它使用了 ReLu 激活函数。

相关推荐
IT_陈寒7 分钟前
React 19新特性实战:5个提升开发效率的技巧与避坑指南
前端·人工智能·后端
声网10 分钟前
主动交互和情境感知,AI 硬件是脱离手机屏幕掌控的蓝海机会丨硬件和端侧模型专场@RTE2025 回顾
人工智能·智能手机
WLJT12312312311 分钟前
方寸之间藏智慧:家用电器的进化与生活革新
大数据·人工智能
创客匠人老蒋15 分钟前
从自动驾驶到智能辅导:人工智能如何重塑商业与生活
人工智能·自动驾驶·生活
ar012337 分钟前
AR眼镜在工业制造业的质量检测应用探讨
人工智能·ar
胖墩会武术1 小时前
【OpenCV图像处理】图像去噪:cv.fastNlMeansDenoising()
图像处理·opencv·计算机视觉
糯米导航1 小时前
解锁 AI 开发技能:环境搭建、工具详解与第一个 AI 程序实战
人工智能
pen-ai1 小时前
【高级机器学习】6. 稀疏编码与正则化
人工智能·机器学习
骑蜗牛散步1 小时前
安装 NVIDIA Container Runtime(含离线安装)
人工智能
美团技术团队1 小时前
美团开源LongCat-Audio-Codec,高效语音编解码器助力实时交互落地
人工智能