每天五分钟计算机视觉:ImageNet大赛的世界冠军AlexNet模型

AlexNet模型

2012 Imagenet 比赛第一,Top5准确度超出第二10% ,它让人们认识到了深度学习技术的威力。比 LeNet更深,用多层小卷积层叠加替换大卷积层,就是说每一个卷积层的通道数小,不像LeNet一样每个卷积层的通道数很大。

AlexNet

一张227×227×3的图片作为输入,第一层我们使用 96 个11×11 的过滤器,步幅为 4,由于步幅是 4,因此尺寸缩小到 55×55,缩小了 4 倍左右。

然后用一个 3×3 的过滤器构建最大池化层, = 3,步幅为 2,卷积层尺寸缩小为 27×27×96。接着再执行一个 5×5 的卷积,padding 之后,输出是 27×27×276。

然后再次进行最大池化,尺寸缩小到 13×13。再执行一次 same 卷积,相同的 padding,得到的结果是 13×13×384,384个过滤器。再做一次 same 卷积,就像这样。

再做一次同样的操作,最后再进行一次最大池化,尺寸缩小到 6×6×256。

6×6×256 等于 9216,将其展开为 9216 个单元,然后是一些全连接层。

最后使用 softmax 函数输出识别的结果,看它究竟是 1000 个可能的对象中的哪一个。

AlexNet 包含约 6000 万个参数。当用于训练图像和数据集时,AlexNet 能够处理非常相似的基本构造模块,这些模块往往包含着大量的隐藏单元或数据,这一点 AlexNet 表现出色。AlexNet 比 LeNet 表现更为出色的另一个原因是它使用了 ReLu 激活函数。

相关推荐
飞哥数智坊19 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三19 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯20 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet1 天前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算1 天前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心1 天前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar1 天前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai1 天前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI1 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp