每天五分钟计算机视觉:ImageNet大赛的世界冠军AlexNet模型

AlexNet模型

2012 Imagenet 比赛第一,Top5准确度超出第二10% ,它让人们认识到了深度学习技术的威力。比 LeNet更深,用多层小卷积层叠加替换大卷积层,就是说每一个卷积层的通道数小,不像LeNet一样每个卷积层的通道数很大。

AlexNet

一张227×227×3的图片作为输入,第一层我们使用 96 个11×11 的过滤器,步幅为 4,由于步幅是 4,因此尺寸缩小到 55×55,缩小了 4 倍左右。

然后用一个 3×3 的过滤器构建最大池化层, = 3,步幅为 2,卷积层尺寸缩小为 27×27×96。接着再执行一个 5×5 的卷积,padding 之后,输出是 27×27×276。

然后再次进行最大池化,尺寸缩小到 13×13。再执行一次 same 卷积,相同的 padding,得到的结果是 13×13×384,384个过滤器。再做一次 same 卷积,就像这样。

再做一次同样的操作,最后再进行一次最大池化,尺寸缩小到 6×6×256。

6×6×256 等于 9216,将其展开为 9216 个单元,然后是一些全连接层。

最后使用 softmax 函数输出识别的结果,看它究竟是 1000 个可能的对象中的哪一个。

AlexNet 包含约 6000 万个参数。当用于训练图像和数据集时,AlexNet 能够处理非常相似的基本构造模块,这些模块往往包含着大量的隐藏单元或数据,这一点 AlexNet 表现出色。AlexNet 比 LeNet 表现更为出色的另一个原因是它使用了 ReLu 激活函数。

相关推荐
Topstip6 分钟前
Gemini 对话机器人加入开源盲水印技术来检测 AI 生成的内容
人工智能·ai·机器人
Bearnaise9 分钟前
PointMamba: A Simple State Space Model for Point Cloud Analysis——点云论文阅读(10)
论文阅读·笔记·python·深度学习·机器学习·计算机视觉·3d
小嗷犬22 分钟前
【论文笔记】VCoder: Versatile Vision Encoders for Multimodal Large Language Models
论文阅读·人工智能·语言模型·大模型·多模态
Struart_R27 分钟前
LVSM: A LARGE VIEW SYNTHESIS MODEL WITH MINIMAL 3D INDUCTIVE BIAS 论文解读
人工智能·3d·transformer·三维重建
lucy1530275107928 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
幻风_huanfeng1 小时前
线性代数中的核心数学知识
人工智能·机器学习
volcanical1 小时前
LangGPT结构化提示词编写实践
人工智能
weyson2 小时前
CSharp OpenAI
人工智能·语言模型·chatgpt·openai
RestCloud2 小时前
ETLCloud异常问题分析ai功能
人工智能·ai·数据分析·etl·数据集成工具·数据异常
IT古董2 小时前
【机器学习】决定系数(R²:Coefficient of Determination)
人工智能·python·机器学习