每天五分钟计算机视觉:ImageNet大赛的世界冠军AlexNet模型

AlexNet模型

2012 Imagenet 比赛第一,Top5准确度超出第二10% ,它让人们认识到了深度学习技术的威力。比 LeNet更深,用多层小卷积层叠加替换大卷积层,就是说每一个卷积层的通道数小,不像LeNet一样每个卷积层的通道数很大。

AlexNet

一张227×227×3的图片作为输入,第一层我们使用 96 个11×11 的过滤器,步幅为 4,由于步幅是 4,因此尺寸缩小到 55×55,缩小了 4 倍左右。

然后用一个 3×3 的过滤器构建最大池化层, = 3,步幅为 2,卷积层尺寸缩小为 27×27×96。接着再执行一个 5×5 的卷积,padding 之后,输出是 27×27×276。

然后再次进行最大池化,尺寸缩小到 13×13。再执行一次 same 卷积,相同的 padding,得到的结果是 13×13×384,384个过滤器。再做一次 same 卷积,就像这样。

再做一次同样的操作,最后再进行一次最大池化,尺寸缩小到 6×6×256。

6×6×256 等于 9216,将其展开为 9216 个单元,然后是一些全连接层。

最后使用 softmax 函数输出识别的结果,看它究竟是 1000 个可能的对象中的哪一个。

AlexNet 包含约 6000 万个参数。当用于训练图像和数据集时,AlexNet 能够处理非常相似的基本构造模块,这些模块往往包含着大量的隐藏单元或数据,这一点 AlexNet 表现出色。AlexNet 比 LeNet 表现更为出色的另一个原因是它使用了 ReLu 激活函数。

相关推荐
谷粒.4 小时前
Cypress vs Playwright vs Selenium:现代Web自动化测试框架深度评测
java·前端·网络·人工智能·python·selenium·测试工具
Dev7z5 小时前
基于MATLAB数学形态学的边缘检测算法仿真实现
算法·计算机视觉·matlab
CareyWYR8 小时前
每周AI论文速递(251201-251205)
人工智能
北京耐用通信10 小时前
电磁阀通讯频频“掉链”?耐达讯自动化Ethernet/IP转DeviceNet救场全行业!
人工智能·物联网·网络协议·安全·自动化·信息与通信
cooldream200910 小时前
小智 AI 智能音箱深度体验全解析:人设、音色、记忆与多场景玩法的全面指南
人工智能·嵌入式硬件·智能音箱
oil欧哟10 小时前
AI 虚拟试穿实战,如何低成本生成模特上身图
人工智能·ai作画
央链知播11 小时前
中国移联元宇宙与人工智能产业委联席秘书长叶毓睿受邀到北京联合大学做大模型智能体现状与趋势专题报告
人工智能·科技·业界资讯
人工智能培训11 小时前
卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能·神经网络·cnn
懷淰メ11 小时前
【AI加持】基于PyQt5+YOLOv8+DeepSeek的输电隐患检测系统(详细介绍)
yolo·目标检测·计算机视觉·pyqt·deepseek·监测系统·输电隐患
YIN_尹11 小时前
目标检测模型量化加速在 openEuler 上的实现
人工智能·目标检测·计算机视觉