每天五分钟计算机视觉:ImageNet大赛的世界冠军AlexNet模型

AlexNet模型

2012 Imagenet 比赛第一,Top5准确度超出第二10% ,它让人们认识到了深度学习技术的威力。比 LeNet更深,用多层小卷积层叠加替换大卷积层,就是说每一个卷积层的通道数小,不像LeNet一样每个卷积层的通道数很大。

AlexNet

一张227×227×3的图片作为输入,第一层我们使用 96 个11×11 的过滤器,步幅为 4,由于步幅是 4,因此尺寸缩小到 55×55,缩小了 4 倍左右。

然后用一个 3×3 的过滤器构建最大池化层, = 3,步幅为 2,卷积层尺寸缩小为 27×27×96。接着再执行一个 5×5 的卷积,padding 之后,输出是 27×27×276。

然后再次进行最大池化,尺寸缩小到 13×13。再执行一次 same 卷积,相同的 padding,得到的结果是 13×13×384,384个过滤器。再做一次 same 卷积,就像这样。

再做一次同样的操作,最后再进行一次最大池化,尺寸缩小到 6×6×256。

6×6×256 等于 9216,将其展开为 9216 个单元,然后是一些全连接层。

最后使用 softmax 函数输出识别的结果,看它究竟是 1000 个可能的对象中的哪一个。

AlexNet 包含约 6000 万个参数。当用于训练图像和数据集时,AlexNet 能够处理非常相似的基本构造模块,这些模块往往包含着大量的隐藏单元或数据,这一点 AlexNet 表现出色。AlexNet 比 LeNet 表现更为出色的另一个原因是它使用了 ReLu 激活函数。

相关推荐
爆改模型3 分钟前
【Trans2025】计算机视觉|即插即用|AFANet:炸裂!图像分割新SOTA,轻松碾压传统方法!
人工智能·计算机视觉
陈敬雷-充电了么-CEO兼CTO6 分钟前
具身智能多模态感知与场景理解:融合语言模型的多模态大模型
人工智能·python·gpt·语言模型·自然语言处理·chatgpt·多模态
荔枝吻6 分钟前
【AI总结】Python BERT 向量化入门指南
人工智能·python·bert
张子夜 iiii15 分钟前
传统神经网络实现-----手写数字识别(MNIST)项目
人工智能·pytorch·python·深度学习·算法
微盛AI企微管家23 分钟前
中小企业数字化转型卡在哪?选对AI工具+用好企业微信,人力成本直降70%
人工智能·企业微信
飞翔的佩奇25 分钟前
【完整源码+数据集+部署教程】骰子点数识别图像实例分割系统源码和数据集:改进yolo11-DCNV2
python·yolo·计算机视觉·数据集·yolo11·骰子点数识别图像实例分割
沧海一粟青草喂马42 分钟前
国产GEO工具哪家强?巨推集团、SEO研究协会网、业界科技三强对比
人工智能
小陈phd1 小时前
高级RAG策略学习(六)——Contextual Chunk Headers(CCH)技术
人工智能·langchain
beot学AI1 小时前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
西猫雷婶1 小时前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论