数据挖掘常用公开数据集

数据挖掘的公开数据集资源非常丰富,覆盖多个领域(金融、医疗、社交网络、图像、文本等)。以下是一些方便实用且广泛认可的公开数据集平台和经典数据集,适合快速验证模型和项目实践:


一、综合数据集平台

  1. Kaggle Datasets

    🔗 Find Open Datasets and Machine Learning Projects | Kaggle

    • 特点:社区活跃,数据集附带代码案例(Notebooks),适合初学者。

    • 实用数据集

      • Titanic(分类预测)

      • House Prices(回归预测)

      • COVID-19 Open Research Dataset(文本挖掘)

  2. UCI Machine Learning Repository

    🔗 UCI Machine Learning Repository

    • 特点:学术经典,覆盖分类、回归、聚类等任务。

    • 实用数据集

      • Iris(分类,150条花卉数据)

      • Wine(分类,葡萄酒成分)

      • Adult(二分类,收入预测)

  3. Google Dataset Search

    🔗 https://datasetsearch.research.google.com

    • 特点:搜索引擎式查找,聚合全网开放数据集。

二、领域专项数据集

1. 金融与经济
2. 社交网络与图数据
3. 文本与 NLP
4. 图像与视频
  • CIFAR-10/100

    🔗 官方下载

    • 6万张10类/100类小尺寸图像(物体识别)。
  • MNIST(手写数字识别)

    • 入门必用,集成在sklearn/TensorFlow中。
5. 时间序列

三、政府与组织开放数据

  1. 中国政府开放数据平台

    🔗 https://data.stats.gov.cn(国家统计局)

    • 经济、人口、区域统计数据。
  2. NASA Open Data

    🔗 https://data.nasa.gov

    • 卫星影像、气候数据。
  3. European Union Open Data Portal

🔗 https://data.europa.eu

四、实用建议

  1. 选数据集看三点

    • 数据质量(是否清洗过)

    • 任务匹配度(分类/回归/聚类)

    • 数据规模(小样本练手 vs 大数据挑战)

  2. 快速调用方式

Python库直接加载(示例):

复制代码
from sklearn.datasets import load_iris, fetch_california_housing
iris = load_iris()  # 鸢尾花数据集
housing = fetch_california_housing()  # 加州房价数据集

附:5个最适合练手的经典数据集

数据集名称 领域 任务类型 数据量 获取方式
Iris 生物 多分类 150 sklearn.datasets.load_iris
Titanic 用户行为 二分类 891 Kaggle
MNIST 图像 多分类 70k torchvision.datasets.MNIST
Wine Quality 食品科学 回归/分类 4.9k UCI 或 Kaggle
Spam SMS NLP 文本分类 5.5k Kaggle链接

提示 :优先选择预处理较完整的数据集(如Kaggle),避免时间浪费在数据清洗上。进阶场景可挑战非结构化数据(如爬虫获取的原始文本/图像)。

相关推荐
之歆1 天前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派1 天前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
sensen_kiss1 天前
INT303 Big Data Analysis 大数据分析 Pt.12 推荐系统(Recommendation Systems)
大数据·数据挖掘·数据分析
且去填词1 天前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3011 天前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578021 天前
人工智能发展历史
人工智能
强盛小灵通专卖员1 天前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder1 天前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me1 天前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU1 天前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作