Python实现FA萤火虫优化算法优化循环神经网络分类模型(LSTM分类算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1 . 项目背景

萤火虫算法(Fire-fly algorithm,FA)由剑桥大学Yang于2009年提出 , 作为最新的群智能优化算法之一,该算法具有更好的收敛速度和收敛精度,且易于工程实现等优点。

本项目通过FA萤火虫优化算法优化循环神经网络分类模型。

2 . 数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |

数据详情如下(部分展示):

3. 数据预处理

3.1 用P andas 工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:

3. 3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4. 探索性数据分析

4 . 1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4 .2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4 .3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5. 特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建FA萤火虫优化算法优化LSTM分类模型

主要使用FA萤火虫优化算法优化LSTM分类算法,用于目标分类。

6.1 FA萤火虫优化算法寻找最优的参数值

最优参数:

6.2 最优参数值构建模型

|------------|--------------|--------------------|
| 编号 | 模型名称 | 参数 |
| 1 | LSTM分类模型 | units=best_units |
| 2 | LSTM分类模型 | epochs=best_epochs |

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失和准确率曲线图

7.模型评估

7.1 评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

|--------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| LSTM分类模型 | 准确率 | 0.8350 |
| LSTM分类模型 | 查准率 | 0.8533 |
| LSTM分类模型 | 查全率 | 0.801 |
| LSTM分类模型 | F1分值 | 0.8263 |

从上表可以看出,F1分值为0.8350,说明模型效果较好。

关键代码如下:

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.84;分类为1的F1分值为0.83。

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有27个样本;实际为1预测不为1的 有39个样本,整体预测准确率良好。

8. 结论与展望

综上所述,本文采用了FA萤火虫优化算法寻找循环神经网络LSTM算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

python 复制代码
# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/18fd5YEIMAAiuBWnzuC7BBQ 
提取码:3uwj

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


相关推荐
終不似少年遊*13 分钟前
美国加州房价数据分析02
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
hnmpf18 分钟前
flask-admin modelview 中重写get_query函数
后端·python·flask
天天要nx29 分钟前
D105【python 接口自动化学习】- pytest进阶参数化用法
python·pytest
是十一月末39 分钟前
Opencv实现图片和视频的加噪、平滑处理
人工智能·python·opencv·计算机视觉·音视频
周盛欢1 小时前
云服务器yum无法解析mirrorlist.centos.org
开发语言·python
三月七(爱看动漫的程序员)1 小时前
HiQA: A Hierarchical Contextual Augmentation RAG for Multi-Documents QA---附录
人工智能·单片机·嵌入式硬件·物联网·机器学习·语言模型·自然语言处理
程序员一诺1 小时前
【深度学习】嘿马深度学习笔记第10篇:卷积神经网络,学习目标【附代码文档】
人工智能·python·深度学习·算法
是我知白哒1 小时前
pdf转换文本:基于python的tesseract
python·pdf·ocr
MUTA️1 小时前
RT-DETR学习笔记(2)
人工智能·笔记·深度学习·学习·机器学习·计算机视觉
代码的乐趣2 小时前
支持selenium的chrome driver更新到131.0.6778.204
chrome·python·selenium