【动手学深度学习】(八)数值稳定和模型初始化

文章目录

一、理论知识

1.神经网络的梯度

考虑如下有d层的神经网络

计算损失l关于参数Wt的梯度(链式法则)

2.数值稳定性常见的两个问题

3.梯度爆炸

4.梯度爆炸的问题

  • 值超出阈值
    • 对于16位浮点数尤为严重
  • 对学习率敏感
    • 如果学习率太大-> 大参数值 -> 更大的梯度
    • 如果学习率太小->训练无进展
    • 我们可能需要在训练过程中不断调整学习率
      5.梯度消失
  • 使用sigmoid作为激活函数

    6.梯度消失的问题
  • 梯度值变为0
    • 对16位浮点数尤为严重
  • 训练没有进展
    • 不管如何选择学习率
  • 对于底部层尤为严重
    • 仅仅顶部层训练的较好
    • 无法让神经网络更深
      7.让训练更加稳定
  • 目标:让梯度值在合理的范围内,ex[1e-6,1e3]
  • 将乘法变加法
    • ResNet,LSTM
  • 归一化
    • 梯度归一化,梯度裁剪
  • 合理的权重初始和激活函数
    8.让每层的方差是一个常数

    9.权重初始化
  • 在合理值区间里随机初始化参数
  • 训练开始的时候更容易有数值不稳定
    • 远离最优解的地方损失函数表面可能很复杂
    • 最优解附近表面会比较平
      使用来初始化可能对小网络没问题,但不能保证深度神经网络
相关推荐
啊阿狸不会拉杆7 分钟前
《数字图像处理》第 10 章 - 图像分割
图像处理·人工智能·深度学习·算法·计算机视觉·数字图像处理
Dev7z8 分钟前
基于深度学习的车辆品牌与类型智能识别系统设计与实现
人工智能·深度学习
国科安芯9 分钟前
强辐射环境无人机视频系统MCU可靠性分析
人工智能·单片机·嵌入式硬件·音视频·无人机·边缘计算·安全性测试
华奥系科技9 分钟前
社区治理创新模式:智慧社区如何通过数字化工具激活邻里活力
大数据·人工智能
AI_56789 分钟前
Airflow“3分钟上手”教程:用Python定义定时数据清洗任务
开发语言·人工智能·python
蓝海星梦9 分钟前
【强化学习】深度解析 DAPO:从 GRPO 到 Decoupled Clip & Dynamic Sampling
人工智能·深度学习·自然语言处理·强化学习
人工智能AI技术14 分钟前
Agent核心模块进阶:让每个组件更智能、更实用
人工智能
羑悻的小杀马特15 分钟前
不做“孤岛”做“中枢”:拆解金仓时序库,看国产基础软件如何玩转“多模融合”
数据库·人工智能
weixin_4624462316 分钟前
从零搭建AI关系图生成助手:Chainlit 结合LangChain、LangGraph和可视化技术
人工智能·langchain·langgraph·chainlit
桂花饼16 分钟前
Python 实战 Sora-2 视频生成:基于小镜 AI 的低成本与角色一致性解决方案
人工智能·sora2·gemini 3·gpt-5.2·codex-max