【动手学深度学习】(八)数值稳定和模型初始化

文章目录

一、理论知识

1.神经网络的梯度

考虑如下有d层的神经网络

计算损失l关于参数Wt的梯度(链式法则)

2.数值稳定性常见的两个问题

3.梯度爆炸

4.梯度爆炸的问题

  • 值超出阈值
    • 对于16位浮点数尤为严重
  • 对学习率敏感
    • 如果学习率太大-> 大参数值 -> 更大的梯度
    • 如果学习率太小->训练无进展
    • 我们可能需要在训练过程中不断调整学习率
      5.梯度消失
  • 使用sigmoid作为激活函数

    6.梯度消失的问题
  • 梯度值变为0
    • 对16位浮点数尤为严重
  • 训练没有进展
    • 不管如何选择学习率
  • 对于底部层尤为严重
    • 仅仅顶部层训练的较好
    • 无法让神经网络更深
      7.让训练更加稳定
  • 目标:让梯度值在合理的范围内,ex[1e-6,1e3]
  • 将乘法变加法
    • ResNet,LSTM
  • 归一化
    • 梯度归一化,梯度裁剪
  • 合理的权重初始和激活函数
    8.让每层的方差是一个常数

    9.权重初始化
  • 在合理值区间里随机初始化参数
  • 训练开始的时候更容易有数值不稳定
    • 远离最优解的地方损失函数表面可能很复杂
    • 最优解附近表面会比较平
      使用来初始化可能对小网络没问题,但不能保证深度神经网络
相关推荐
闻道且行之9 分钟前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
造夢先森11 分钟前
Transformer & LLaMA
深度学习·transformer·llama
喝不完一杯咖啡15 分钟前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
huaqianzkh43 分钟前
理解构件的3种分类方法
人工智能·分类·数据挖掘
后端码匠43 分钟前
Spring Boot3+Vue2极速整合:10分钟搭建DeepSeek AI对话系统
人工智能·spring boot·后端
用户2314349781444 分钟前
使用 Trae AI 编程平台生成扫雷游戏
人工智能·设计
神经美学_茂森1 小时前
神经网络防“失忆“秘籍:弹性权重固化如何让AI学会“温故知新“
人工智能·深度学习·神经网络
大囚长1 小时前
AI工作流+专业知识库+系统API的全流程任务自动化
运维·人工智能·自动化
阿_旭1 小时前
【超详细】神经网络的可视化解释
人工智能·深度学习·神经网络
Se7en2581 小时前
提升 AI 服务的稳定性:Higress AI 网关的降级功能介绍
人工智能