【动手学深度学习】(八)数值稳定和模型初始化

文章目录

一、理论知识

1.神经网络的梯度

考虑如下有d层的神经网络

计算损失l关于参数Wt的梯度(链式法则)

2.数值稳定性常见的两个问题

3.梯度爆炸

4.梯度爆炸的问题

  • 值超出阈值
    • 对于16位浮点数尤为严重
  • 对学习率敏感
    • 如果学习率太大-> 大参数值 -> 更大的梯度
    • 如果学习率太小->训练无进展
    • 我们可能需要在训练过程中不断调整学习率
      5.梯度消失
  • 使用sigmoid作为激活函数

    6.梯度消失的问题
  • 梯度值变为0
    • 对16位浮点数尤为严重
  • 训练没有进展
    • 不管如何选择学习率
  • 对于底部层尤为严重
    • 仅仅顶部层训练的较好
    • 无法让神经网络更深
      7.让训练更加稳定
  • 目标:让梯度值在合理的范围内,ex[1e-6,1e3]
  • 将乘法变加法
    • ResNet,LSTM
  • 归一化
    • 梯度归一化,梯度裁剪
  • 合理的权重初始和激活函数
    8.让每层的方差是一个常数

    9.权重初始化
  • 在合理值区间里随机初始化参数
  • 训练开始的时候更容易有数值不稳定
    • 远离最优解的地方损失函数表面可能很复杂
    • 最优解附近表面会比较平
      使用来初始化可能对小网络没问题,但不能保证深度神经网络
相关推荐
Moniane4 小时前
A2A+MCP构建智能体协作生态:下一代分布式人工智能架构解析
人工智能·分布式·架构
sendnews5 小时前
红松小课首次亮相北京老博会,四大业务矩阵赋能退休生活提质升级
人工智能·物联网
停停的茶5 小时前
深度学习——图像分割
人工智能·深度学习
MIXLLRED5 小时前
自动驾驶技术全景解析:从感知、决策到控制的演进与挑战
人工智能·机器学习·自动驾驶
金融Tech趋势派5 小时前
企业微信AI SCRM推荐:从技术适配与场景功能实践进行评估
大数据·人工智能
Wnq100726 小时前
AI 在法律咨询服务中的革命性变化:技术赋能与生态重构
人工智能·职场和发展·重构·分类·数据分析·全文检索·创业创新
茶杯6756 小时前
极睿iClip易视频:2025年AI混剪领域的革新工具,重构电商内容生产逻辑
人工智能
一点一木6 小时前
🚀 2025 年 10 月 GitHub 十大热门项目排行榜 🔥
前端·人工智能·github
湘-枫叶情缘6 小时前
程序与工业:从附庸到共生,在AI浪潮下的高维重构
人工智能·重构