【动手学深度学习】(八)数值稳定和模型初始化

文章目录

一、理论知识

1.神经网络的梯度

考虑如下有d层的神经网络

计算损失l关于参数Wt的梯度(链式法则)

2.数值稳定性常见的两个问题

3.梯度爆炸

4.梯度爆炸的问题

  • 值超出阈值
    • 对于16位浮点数尤为严重
  • 对学习率敏感
    • 如果学习率太大-> 大参数值 -> 更大的梯度
    • 如果学习率太小->训练无进展
    • 我们可能需要在训练过程中不断调整学习率
      5.梯度消失
  • 使用sigmoid作为激活函数

    6.梯度消失的问题
  • 梯度值变为0
    • 对16位浮点数尤为严重
  • 训练没有进展
    • 不管如何选择学习率
  • 对于底部层尤为严重
    • 仅仅顶部层训练的较好
    • 无法让神经网络更深
      7.让训练更加稳定
  • 目标:让梯度值在合理的范围内,ex[1e-6,1e3]
  • 将乘法变加法
    • ResNet,LSTM
  • 归一化
    • 梯度归一化,梯度裁剪
  • 合理的权重初始和激活函数
    8.让每层的方差是一个常数

    9.权重初始化
  • 在合理值区间里随机初始化参数
  • 训练开始的时候更容易有数值不稳定
    • 远离最优解的地方损失函数表面可能很复杂
    • 最优解附近表面会比较平
      使用来初始化可能对小网络没问题,但不能保证深度神经网络
相关推荐
小马过河R1 分钟前
混元世界模型1.5架构原理初探
人工智能·语言模型·架构·nlp
三万棵雪松4 分钟前
【AI小智后端部分(一)】
人工智能·python·ai小智
编程小Y5 分钟前
Adobe Animate 2024:2D 矢量动画与交互创作利器下载安装教程
人工智能
laplace01236 分钟前
Part 3:模型调用、记忆管理与工具调用流程(LangChain 1.0)笔记(Markdown)
开发语言·人工智能·笔记·python·langchain·prompt
mys551812 分钟前
杨建允:AI搜索优化对汽车服务行业获客的影响
人工智能·aigc·geo·ai搜索优化·ai引擎优化
2501_9361460416 分钟前
鱼类识别与分类:基于freeanchor_x101-32x4d_fpn_1x_coco的三种鱼类自动检测
人工智能·分类·数据挖掘
鲨莎分不晴17 分钟前
拯救暗淡图像:深度解析直方图均衡化(原理、公式与计算)
人工智能·算法·机器学习
好奇龙猫18 分钟前
【人工智能学习-AI-MIT公开课-10. 学习介绍、最近邻】
人工智能·学习
智算菩萨29 分钟前
2026马年新岁:拥抱智能时代,共谱科技华章
人工智能·科技
TTSOP跨境情报员31 分钟前
从内容到品牌:TikTok美国视频带货的品牌化路径与心智建设
人工智能·跨境电商·tiktok shop·品牌建设