【动手学深度学习】(八)数值稳定和模型初始化

文章目录

一、理论知识

1.神经网络的梯度

考虑如下有d层的神经网络

计算损失l关于参数Wt的梯度(链式法则)

2.数值稳定性常见的两个问题

3.梯度爆炸

4.梯度爆炸的问题

  • 值超出阈值
    • 对于16位浮点数尤为严重
  • 对学习率敏感
    • 如果学习率太大-> 大参数值 -> 更大的梯度
    • 如果学习率太小->训练无进展
    • 我们可能需要在训练过程中不断调整学习率
      5.梯度消失
  • 使用sigmoid作为激活函数

    6.梯度消失的问题
  • 梯度值变为0
    • 对16位浮点数尤为严重
  • 训练没有进展
    • 不管如何选择学习率
  • 对于底部层尤为严重
    • 仅仅顶部层训练的较好
    • 无法让神经网络更深
      7.让训练更加稳定
  • 目标:让梯度值在合理的范围内,ex[1e-6,1e3]
  • 将乘法变加法
    • ResNet,LSTM
  • 归一化
    • 梯度归一化,梯度裁剪
  • 合理的权重初始和激活函数
    8.让每层的方差是一个常数

    9.权重初始化
  • 在合理值区间里随机初始化参数
  • 训练开始的时候更容易有数值不稳定
    • 远离最优解的地方损失函数表面可能很复杂
    • 最优解附近表面会比较平
      使用来初始化可能对小网络没问题,但不能保证深度神经网络
相关推荐
atbigapp.com7 分钟前
PromptIDE提示词开发工具支持定向优化啦
人工智能
jndingxin13 分钟前
OpenCV CUDA模块中逐元素操作------算术运算
人工智能·opencv·计算机视觉
白熊18835 分钟前
【图像生成大模型】Step-Video-T2V:下一代文本到视频生成技术
人工智能·opencv·yolo·计算机视觉·大模型·音视频
立秋678938 分钟前
从零开始:使用 PyTorch 构建深度学习网络
人工智能·pytorch·深度学习
21级的乐未央1 小时前
论文阅读(四):Agglomerative Transformer for Human-Object Interaction Detection
论文阅读·深度学习·计算机视觉·transformer
知舟不叙1 小时前
基于OpenCV的实时文档扫描与矫正技术
人工智能·opencv·计算机视觉·透视变换·实时文档扫描与矫正
Blossom.1181 小时前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
说私域2 小时前
O2O电商变现:线上线下相互导流——基于定制开发开源AI智能名片S2B2C商城小程序的研究
人工智能·小程序·开源·零售
埃菲尔铁塔_CV算法2 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新(二)
深度学习·算法·目标检测
Jamence2 小时前
多模态大语言模型arxiv论文略读(七十六)
人工智能·语言模型·自然语言处理