python笔记:dtaidistance

1 介绍

  • 用于DTW的库
  • 纯Python实现和更快的C语言实现

2 DTW举例

2.1 绘制warping 路径

python 复制代码
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np
import matplotlib.pyplot as plt

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
path=dtw.warping_path(s1,s2)
dtwvis.plot_warping(s1,s2,path)
python 复制代码
path
'''
[(0, 0),
 (1, 0),
 (2, 1),
 (3, 2),
 (3, 3),
 (4, 4),
 (5, 5),
 (6, 5),
 (7, 6),
 (8, 7),
 (9, 8),
 (10, 9),
 (11, 10),
 (11, 11),
 (12, 12)]
'''

2.2 计算dtw距离

python 复制代码
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
dtw.distance(s1,s2)
#1.4142135623730951

2.3 快速版本计算dtw距离

最快的版本(比其他版本快30至300倍)直接使用C语言编写,但需要数组作为输入(使用双精度类型),并且(可选地)通过将max_dist设置为欧几里得距离的上界来剪枝计算

python 复制代码
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
dtw.distance_fast(s1,s2)
#1.4142135623730951

s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
dtw.distance_fast(s1,s2,use_pruning=True)
#1.4142135623730951

2.4 降低DTW 复杂度

距离函数具有线性空间复杂度但二次时间复杂度。

  • 为了降低时间复杂度,有多种选择可用。
    • 在DTW实现中最常用的方法是使用一个窗口,表示允许的最大偏移量
      • 这将复杂度降低到窗口大小和最长序列长度的乘积
      • window参数:仅允许偏移量最多为此值远离两条对角线
    • 其他一些选项用于提前停止动态规划算法正在探索的某些或所有路径
      • max_dist:避免计算将大于此值的部分路径。如果找不到小于或等于此值的解决方案,则返回无穷大
      • use_pruning:一种剪枝部分路径的好方法是将最大距离设置为欧几里得上界
      • max_length_diff:果两个序列的长度差大于此值,则返回无穷大

2.5 得到累计成本矩阵并绘制之

python 复制代码
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
distance,matrix=dtw.warping_paths(s1,s2)
distance
#1.4142135623730951

matrix.shape
#(14, 14)

2.5.1 求最佳路径

python 复制代码
dtw.best_path(matrix)
'''
[(0, 0),
 (1, 0),
 (2, 1),
 (3, 2),
 (3, 3),
 (4, 4),
 (5, 5),
 (6, 5),
 (7, 6),
 (8, 7),
 (9, 8),
 (10, 9),
 (11, 10),
 (11, 11),
 (12, 12)]
'''

这个其实和我们前面的warping_path是一样的

python 复制代码
dtw.warping_path(s1,s2)
'''
dtw.warping_path(s1,s2)
'''

2.5.2 可视化结果

python 复制代码
dtwvis.plot_warpingpaths(s1,s2,matrix,dtw.warping_path(s1,s2))

2.6 多个时间序列的DTW

  • 要计算列表中所有序列之间的DTW距离度量,可以使用dtw.distance_matrix方法
  • dtw.distance_matrix_fast方法可以加速计算,该方法试图在C语言环境中运行所有算法
python 复制代码
from dtaidistance import dtw
import numpy as np
timeseries = [
    np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
    np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
    np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix(timeseries)
ds
'''
array([[0.        , 1.41421356, 1.        ],
       [1.41421356, 0.        , 1.        ],
       [1.        , 1.        , 0.        ]])
'''

输入为一个列表的列表

2.6.1 compact=True

可以将ds转化成上三角矩阵的值,节省空间

python 复制代码
from dtaidistance import dtw
import numpy as np
timeseries = [
    np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
    np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
    np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]
ds = dtw.distance_matrix(timeseries,compact=True)
ds
#array('d', [1.4142135623730951, 1.0, 1.0])
相关推荐
枫叶20003 分钟前
Windows Docker笔记-制作、加载镜像
windows·笔记·docker
声网1 小时前
a16z 最新 Voice AI 报告:语音将成为关键切入点,而非最终产品本身丨 Voice AI 学习笔记
人工智能·笔记·学习
云边有个稻草人2 小时前
DeepSeek与人工智能的结合:探索搜索技术的未来
人工智能·笔记·科技·算法·deepseek
一晌小贪欢3 小时前
Python办公笔记——将csv文件转Json
笔记·python·json·python办公·python读取csv
张同学的IT技术日记4 小时前
线性代数于工程应用中的实践:以代码实例拆解相似性度量问题的求解逻辑
开发语言·笔记·python·学习·线性代数·工程应用
张同学的IT技术日记4 小时前
线性代数于工程应用中的实践:以代码实例拆解图像平滑问题的求解逻辑
开发语言·笔记·python·学习·线性代数·工程应用
汇能感知4 小时前
摄像头模块烟火检测
经验分享·笔记·科技
相醉为友4 小时前
005 嵌入式Linux应用开发——文件操作
linux·笔记
人生偌只如初见9 小时前
MongoDB学习笔记-解析jsonCommand内容
java·笔记·mongodb
charlie11451419115 小时前
计算机网络笔记再战——理解几个经典的协议4
网络·笔记·学习·计算机网络·教程