【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON

YOLO格式数据集:

python 复制代码
images
|--train
|--test
|--val


labels
|--train
|--test
|--val

代码:

python 复制代码
import os
import json
from PIL import Image

# 设置数据集路径
dataset_path = "path/to/your/dataset"
images_path = os.path.join(dataset_path, "images")
labels_path = os.path.join(dataset_path, "labels")

# 类别映射
categories = [
    {"id": 1, "name": "category1"},
    {"id": 2, "name": "category2"},
    # 添加更多类别
]

# YOLO格式转COCO格式的函数
def convert_yolo_to_coco(x_center, y_center, width, height, img_width, img_height):
    x_min = (x_center - width / 2) * img_width
    y_min = (y_center - height / 2) * img_height
    width = width * img_width
    height = height * img_height
    return [x_min, y_min, width, height]

# 初始化COCO数据结构
def init_coco_format():
    return {
        "images": [],
        "annotations": [],
        "categories": categories
    }

# 处理每个数据集分区
for split in ['train', 'test', 'val']:
    coco_format = init_coco_format()
    annotation_id = 1

    for img_name in os.listdir(os.path.join(images_path, split)):
        if img_name.lower().endswith(('.png', '.jpg', '.jpeg')):
            img_path = os.path.join(images_path, split, img_name)
            label_path = os.path.join(labels_path, split, img_name.replace("jpg", "txt"))

            img = Image.open(img_path)
            img_width, img_height = img.size
            image_info = {
                "file_name": img_name,
                "id": len(coco_format["images"]) + 1,
                "width": img_width,
                "height": img_height
            }
            coco_format["images"].append(image_info)

            if os.path.exists(label_path):
                with open(label_path, "r") as file:
                    for line in file:
                        category_id, x_center, y_center, width, height = map(float, line.split())
                        bbox = convert_yolo_to_coco(x_center, y_center, width, height, img_width, img_height)
                        annotation = {
                            "id": annotation_id,
                            "image_id": image_info["id"],
                            "category_id": int(category_id) + 1,
                            "bbox": bbox,
                            "area": bbox[2] * bbox[3],
                            "iscrowd": 0
                        }
                        coco_format["annotations"].append(annotation)
                        annotation_id += 1

    # 为每个分区保存JSON文件
    with open(f"path/to/output/{split}_coco_format.json", "w") as json_file:
        json.dump(coco_format, json_file, indent=4)
相关推荐
红色的山茶花25 分钟前
YOLOv9-0.1部分代码阅读笔记-loss_tal_dual.py
笔记·深度学习·yolo
一勺汤2 小时前
YOLO11改进-注意力-引入自调制特征聚合模块SMFA
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·目标跟踪
风抽过的烟头3 小时前
Python提取字符串中的json,时间,特定字符
前端·python·json
Stara05114 小时前
基于YOLOV5+Flask安全帽RTSP视频流实时目标检测
python·yolo·目标检测·flask
深蓝海拓4 小时前
使用sam进行零样本、零学习的分割实践
人工智能·深度学习·学习·目标检测·计算机视觉
Ven%6 小时前
DeepSpeed的json配置讲解:ds_config_zero3.json
人工智能·python·ubuntu·json·aigc
神秘的土鸡10 小时前
基于矩阵乘积态的生成模型:量子力学与生成任务的结合
深度学习·目标检测·计算机视觉
红色的山茶花12 小时前
YOLOv9-0.1部分代码阅读笔记-train.py
笔记·深度学习·yolo
少说多想勤做16 小时前
【前沿 热点 顶会】AAAI 2025中与目标检测有关的论文
人工智能·深度学习·神经网络·目标检测·计算机视觉·目标跟踪·aaai
大G哥1 天前
pytest自动化测试数据驱动yaml/excel/csv/json
json·excel·pytest