Kafka 分布式消息系统

文章目录


消息中间件对比


Kafka概述

Kafka 是一个分布式流媒体平台,类似于消息队列或企业消息传递系统。kafka官网:http://kafka.apache.org/

  • Producers:消息的生产者
  • Consumers:消息的消费者
  • Kafka Cluster:Kafka 集群
  • Connectors:连接器
  • Stream Processors:Stream 流处理
  • producer:发布消息的对象称之为主题生产者(Kafka topic producer)
  • topic:Kafka将消息分门别类,每一类的消息称之为一个主题(Topic)
  • consumer:订阅消息并处理发布的消息的对象称之为主题消费者(consumers)
  • broker:已发布的消息保存在一组服务器中,称之为Kafka集群。集群中的每一个服务器都是一个代理(Broker)。 消费者可以订阅一个或多个主题(topic),并从Broker拉数据,从而消费这些已发布的消息。

kafka安装和配置

Kafka 对于 zookeeper 是强依赖,保存 kafka 相关的节点数据,所以安装 Kafka 之前必须先安装 zookeeper

Docker安装zookeeper

下载镜像

shell 复制代码
docker pull zookeeper:3.4.14

arm linux

shell 复制代码
docker pull arm64v8/zookeeper:3.4.14

创建容器

shell 复制代码
docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14

Docker安装kafka

下载镜像

shell 复制代码
docker pull wurstmeister/kafka:2.12-2.3.1

创建容器

shell 复制代码
docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=10.211.55.6 \
--env KAFKA_ZOOKEEPER_CONNECT=10.211.55.6:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://10.211.55.6:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

--net=host,直接使用容器宿主机的网络命名空间, 即没有独立的网络环境。它使用宿主机的ip和端口

docker ps 查看是否启动成功

kafka入门

  • 生产者发送消息,多个消费者只能有一个消费者接收到消息
  • 生产者发送消息,多个消费者都可以接收到消息

生产者发送消息

1:导入kafka客户端依赖

xml 复制代码
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>

2:编写消息生产者类ProducerQuickstart

①.设置kafka的配置信息

java 复制代码
// 1. kafka 连接配置信息
Properties prop = new Properties();
// kafka 连接地址
prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.211.55.6:9092");
// key 和 value 的序列化
prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");

②.创建生产者对象

java 复制代码
// 2. 创建 kafka 生产者对象
KafkaProducer<String, String> producer = new KafkaProducer<String, String>(prop);

③.发送消息

java 复制代码
// 3. 发送消息
ProducerRecord<String, String> kvProducerRecord = new ProducerRecord<String, String>("topic-first", "key-001", "hello kafka");
producer.send(kvProducerRecord);

④.关闭消息通道

java 复制代码
// 4. 关闭消息通道   必须关闭,否则消息发送不成功
producer.close();

生产者

java 复制代码
/**
 * 生产者
 */
public class ProducerQuickStart {

    public static void main(String[] args) {

        // 1. kafka 连接配置信息
        Properties prop = new Properties();
        // kafka 连接地址
        prop.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.211.55.6:9092");
        // key 和 value 的序列化
        prop.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        prop.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");

        // 2. 创建 kafka 生产者对象
        KafkaProducer<String, String> producer = new KafkaProducer<String, String>(prop);

        // 3. 发送消息
        ProducerRecord<String, String> kvProducerRecord = new ProducerRecord<String, String>("topic-first", "key-001", "hello kafka");
        producer.send(kvProducerRecord);

        // 4. 关闭消息通道   必须关闭,否则消息发送不成功
        producer.close();
    }
}

消费者接收消息

创建ConsumerQuickStart消费者类

①:设置kafka的配置信息

java 复制代码
// 1. kafka的配置信息
Properties prop = new Properties();
// kafka 连接地址
prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.211.55.6:9092");
// key 和 value 的反序列化器
prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

// 设置消费者组
prop.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");

②:创建消费者对象

java 复制代码
// 2. 创建消费者对象
KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(prop);

③:订阅主题

java 复制代码
// 3. 订阅消息
consumer.subscribe(Collections.singletonList("topic-first"));

④:获取消息

java 复制代码
// 4. 拉取消息
while (true){
    ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
    for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
        System.out.println(consumerRecord.key());
        System.out.println(consumerRecord.value());
    }
}

消费者

java 复制代码
public class ConsumerQuickStart {

    public static void main(String[] args) {

        // 1. kafka的配置信息
        Properties prop = new Properties();
        // kafka 连接地址
        prop.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.211.55.6:9092");
        // key 和 value 的反序列化器
        prop.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");
        prop.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");

        // 设置消费者组
        prop.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");

        // 2. 创建消费者对象
        KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(prop);

        // 3. 订阅消息
        consumer.subscribe(Collections.singletonList("topic-first"));

        // 4. 拉取消息
        while (true){
            ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.key());
                System.out.println(consumerRecord.value());
            }
        }
    }
}

生产者发送消息,多个消费者订阅同一个主题,只能有一个消费者收到消息(一对一)

两个消费者在同一个组

生产者发送消息,多个消费者订阅同一个主题,所有消费者都能收到消息(一对多)


两个消费者在不同的组


分区机制

Kafka 中的分区机制指的是将每个主题划分成多个分区(Partition)

可以处理更多的消息,不受单台服务器的限制,可以不受限的处理更多的数据

可以将分区看作存储 Topic 的文件夹,当我们发送消息的时候,可以指定不同的分区,也就是让 Topic 存储到不同的文件夹下(分区),并且也可以是不同的机器上。

topic剖析

每一个分区都是一个顺序的、不可变的消息队列, 并且可以持续的添加。分区中的消息都被分了一个序列号,称之为偏移量(offset),在每个分区中此偏移量都是唯一的。

分区策略

Kafka高可用设计

集群

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成
  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一

备份机制(Replication)

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)
  • 追随者副本(Follower Replica)

备份机制(Replication)-同步方式

ISR(in-sync replica)需要同步复制保存的 follower

如果leader失效后,需要选出新的leader,选举的原则如下:

  • 第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的
  • 第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

  • 第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定
  • 第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整

kafka生产者详解

同步发送

使用 send() 方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

java 复制代码
// 发送消息
RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
// 获取偏移量
System.out.println(recordMetadata.offset());

异步发送

调用 send() 方法,并指定一个回调函数,服务器在返回响应时调用函数

java 复制代码
// 异步发送消息
producer.send(kvProducerRecord, new Callback() {
    @Override
    public void onCompletion(RecordMetadata recordMetadata, Exception e) {
        if (e != null){
            System.out.println("记录异常信息到日志表中");
        }
        System.out.println(recordMetadata.offset());
    }
});

参数详解(ack)

参数详解(retries)

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries 参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

参数详解-消息压缩

默认情况下, 消息发送时不会被压缩。

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。

kafka消费者详解

消费者组

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体
  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者
    • 所有的消费者都在一个组中,那么这就变成了queue模型
    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致
  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序
  • ......

kafka集群托管4个分区(P0-P3),2个消费者组,消费组A有2个消费者,消费组B有4个

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做 _consumer_offset 的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

偏移量

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

偏移量提交方式

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

enable.auto.commit 被设置为 true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从 poll() 方法接收的最大偏移量提交上去

  • 手动提交

enable.auto.commit 被设置为 false 可以有以下三种提交方式

  • 提交当前偏移量(同步提交)
  • 异步提交
  • 同步和异步组合提交

提交当前偏移量(同步提交)

异步提交

同步和异步组合提交

SpringBoot集成kafka收发消息

  1. 导入 spring-kafka 依赖信息
xml 复制代码
<dependency>
   <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>
<!--kafka-->
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
    <exclusions>
        <exclusion>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
</dependency>
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
</dependency>
  1. resources 下创建文件 application.yml
yaml 复制代码
server:
  port: 9991
spring:
  application:
    name: kafka-demo
  kafka:
    bootstrap-servers: 10.211.55.6:9092
    producer:
      retries: 10
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
    consumer:
      group-id: ${spring.application.name}-test
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
  1. 消息生产者
java 复制代码
@RestController
public class HelloController {

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @GetMapping("/hello")
    public String hello(){
        kafkaTemplate.send("topic-key", "hello mx");
        return "ok";
    }
}
  1. 消息消费者
java 复制代码
@Component
public class HelloListener {

    @KafkaListener(topics = "topic-key")
    public void onMessage(String message){
        if (!StringUtils.isEmpty(message)){
            System.out.println(message);
        }
    }
}

传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

  • 方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强
  • 方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可

发送消息

接收消息

相关推荐
材料苦逼不会梦到计算机白富美1 小时前
golang分布式缓存项目 Day 1
分布式·缓存·golang
想进大厂的小王1 小时前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情1 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存
杨荧2 小时前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
ZHOU西口3 小时前
微服务实战系列之玩转Docker(十八)
分布式·docker·云原生·架构·数据安全·etcd·rbac
zmd-zk3 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶3 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic
筱源源3 小时前
Kafka-linux环境部署
linux·kafka
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka中的选举机制
大数据·学习·kafka
Mephisto.java3 小时前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database