社区开放麦-颠覆性创新:多模态对话与精准区域分割

多模态大模型 (LMM) 能够同时处理多种类型的数据,如图像、文本、音频等,因此在自然语言处理、计算机视觉、语音识别等众多应用领域具有广泛的应用前景。然而,如何降低 LMM 构建的成本成为了一个热门研究话题。

为了解决这个问题,基于迁移学习的多模态大模型构建方法 VPGTrans 应运而生。VPGTrans 方法的主要思想是通过将预训练的视觉模型(如 ViT)和文本模型(如 GPT)进行迁移学习,以实现高效的 LMM 构建。具体而言,VPGTrans 借助迁移学习的方式,可以将类 BLIP-2 的 LMM 训练开销缩减到正常训练的10%(如从 2587 美元到 242 美元),且在多个任务上(如VQAv2,GQA)实现模型效果不降反升。此外,我们也会简单介绍在 LMM 组合区域分割方面的一些新尝试。

在本期社区开放麦中,我们特别邀请到新加坡国立大学 NExT++ 实验室博士张傲 带来《颠覆性创新:多模态对话与精准区域分割》分享,详细解读 VPGTrans 方法。

由于大语言模型的火爆,多模态大模型(LMM)也逐渐成为一个重要的研究方向。通过借助已有大语言模型的力量,LMM 在多模态理解任务中展示出丰富的知识,非凡的推理规划能力。但 LMM 的构建往往需要巨大的开销 (GPU 资源和大量数据)。于是我们提出了 VPGTrans 方法,可以通过迁移学习的方法实现高效的 LMM 构建。通过我们的方法,我们可以在模型性能不降甚至提升的情况下,实现训练开销的缩减(如从 2587 美元到 242 美元):

VPGTrans 方法具体包括两个阶段:

  • 在第一阶段,我们主要进行 projector 的初始化和热身训练。具体一点,我们通过训练一个词向量转换器来作为projector 的初始化,并采用 5 倍学习率来对 projector 进行热身训练。

  • 在第二阶段,我们继续进行常规的预训练。

通过我们的 VPGTrans 方法,我们的模型可以实现 GPU 时长的大幅度缩减(如单卡 631.5 小时到 59.0 小时),并且在 VQAv2,GQA 和 OKVQA 数据集实现更高或相仿的效果:

此外,我们 VPGTrans 构建的 VL-Vicuna 也在人工评测中取得了不错的效果:

在 VPGTrans 之后,我们并不满足于仅仅全图理解。我们希望进一步赋予 LMM 模型区域理解的能力。于是,我们初步探索并提出了一种 pixel2emb 方法来对位置输入和输出进行建模:

根据该方法,我们初步构建了 NExT-Chat 模型。NExT-Chat 模型既可以接受区域内容作为输入,也可以输出提及区域的检测框和分割掩膜 (detection + segmentation)。

想了解更多的具体内容,快来预约本周四晚 20:00 的社区开放麦直播吧~

相关工作/ 资料/ 链接

VPGTrans: VPGTrans: Transfer Visual Prompt Generator across LLMs (NeurIPS 2023)

主页(paper+code):

vpgtrans.github.io/

NExT-Chat: An LMM for Chat, Detection and Segmentation (早期技术报告)

主页(paper+code+demo):

next-chatv.github.io/

交流群

同时为了方便大家交流沟通,我们建立了语言大模型相关的交流群,大佬也在群里哦,提供与大佬 1v1 的机会,扫码即可入群~

相关推荐
用什么都重名11 分钟前
DeepSeek-OCR 深度解析
人工智能·ocr·deepseek-ocr
河南骏37 分钟前
RAG_检索进阶
人工智能·深度学习
灯火不休时2 小时前
95%准确率!CNN交通标志识别系统开源
人工智能·python·深度学习·神经网络·cnn·tensorflow
mit6.8242 小时前
[手机AI开发sdk] Aid_code IDE | PC浏览器同步访问
ide·人工智能·智能手机
deephub2 小时前
FastMCP 入门:用 Python 快速搭建 MCP 服务器接入 LLM
服务器·人工智能·python·大语言模型·mcp
番石榴AI3 小时前
基于机器学习优化的主图选择方法(酒店,景点,餐厅等APP上的主图展示推荐)
图像处理·人工智能·python·机器学习
国产化创客3 小时前
基于AI大模型智能硬件--小智AI项目PC端部署测试
人工智能
海边夕阳20063 小时前
【每天一个AI小知识】:什么是零样本学习?
人工智能·经验分享·学习
平凡而伟大(心之所向)3 小时前
云架构设计与实践:从基础到未来趋势
人工智能·阿里云·系统架构·安全架构
数据与后端架构提升之路3 小时前
构建一个可进化的自动驾驶数据管道:规则引擎与异常检测的集成
人工智能·机器学习·自动驾驶