CoDeF视频处理——视频风格转化部署使用与源码解析

一、算法简介与功能

CoDef是作为一种新型的视频表示形式,它包括一个规范内容场,聚合整个视频中的静态内容,以及一个时间变形场,记录了从规范图像(即从规范内容场渲染而成)到每个单独帧的变换过程。针对目标视频,这两个场共同优化以通过一个精心设计的渲染流程对其进行重建。我们特意在优化过程中引入了一些正则化项,促使规范内容场从视频中继承语义(例如,物体的形状)信息。

CoDeF 在视频处理中自然地支持图像算法的升级,这意味着可以将图像算法应用于规范图像,并借助时间变形场轻松地将结果传播到整个视频中。CoDeF 能够将图像到图像的转换提升为视频到视频的转换,将关键点检测提升为关键点跟踪,而无需任何训练。更重要的是,由于CoDef的升级策略仅在一个图像上部署算法,与现有的视频到视频转换方法相比,CoDef在处理的视频中实现了更优越的跨帧一致性,甚至成功地跟踪了水和烟雾等非刚性物体。

二、环境配置

Segment-and-Track-Anything

光线追踪、目标分割

bash 复制代码
conda create -n sta python==3.10
git clone https://github.com/z-x-yang/Segment-and-Track-Anything.git
cd Segment-and-Track-Anything
conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia
conda install m2-base
bash script/install.sh
git clone https://github.com/IDEA-Research/GroundingDINO.git
pip install weditor==0.6.4

https://huggingface.co/bert-base-uncased/tree/main

一、数据处理

1.剪切视频

把视频剪切成4秒以下的视频

2.拆分视频

使用ffmpeg拆分视频

ffmpeg -r 25 -i all_sequences/mm/mm.mp4 -start_number 0 -pix_fmt rgb24 all_sequences/mm/mm/%5d.png

3.分割目标

使用 Segment-and-Track-Anything进行目标分割

activate sta

python app.py

然后打开http://127.0.0.1:7860

然后加载视频

复制到数据目录

4.生成mask图

执行

python preproc_mask.py

5.生成光线追踪数据

cd data_preprocessing/RAFT

bash run_raft.sh mm


二、模型训练

1. 更改配置文件

在configs目录下创建一个和视频数据一个的目录,在目录下添加一个base.yaml文件

文件内容如下,注意img_wh和canonical_wh这两个参数:

bash 复制代码
mask_dir: null
flow_dir: null

img_wh: [720, 1280] #视频尺寸
canonical_wh: [720, 1280] #输出尺寸

lr: 0.001
bg_loss: 0.003

ref_idx: null # 0

N_xyz_w: [8,8,]
flow_loss: 0
flow_step: -1
self_bg: True

deform_hash: True
vid_hash: True

num_steps: 10000
decay_step: [2500, 5000, 7500]
annealed_begin_step: 4000
annealed_step: 4000
save_model_iters: 2000

2. 训练模型

新建一个mm_train_multi.sh文件

bash 复制代码
GPUS=0

NAME="$1"
EXP_NAME="$2"

ROOT_DIRECTORY="all_sequences/$NAME/$NAME"
MODEL_SAVE_PATH="ckpts/all_sequences/$NAME"
LOG_SAVE_PATH="logs/all_sequences/$NAME"

MASK_DIRECTORY="all_sequences/$NAME/${NAME}_masks_0 all_sequences/$NAME/${NAME}_masks_1"
FLOW_DIRECTORY="all_sequences/$NAME/${NAME}_flow"

python train.py --root_dir $ROOT_DIRECTORY \
                --model_save_path $MODEL_SAVE_PATH \
                --log_save_path $LOG_SAVE_PATH  \
                --mask_dir $MASK_DIRECTORY \
                --flow_dir $FLOW_DIRECTORY \
                --gpus $GPUS \
                --encode_w --annealed \
                --config configs/${NAME}/${EXP_NAME}.yaml \
                --exp_name ${EXP_NAME}

运行训练脚本,训练时间大概就几分钟,看GPU的大小:

bash scripts/mm_train_multi.sh mm base

三、测试模型

1.测试数据

在scripts目录下创建一个新的mm_test_multi.sh,文件内容如下:

bash 复制代码
GPUS=0

NAME="$1"
EXP_NAME="$2"

ROOT_DIRECTORY="all_sequences/$NAME/$NAME"
LOG_SAVE_PATH="logs/test_all_sequences/$NAME"

MASK_DIRECTORY="all_sequences/$NAME/${NAME}_masks_0 all_sequences/$NAME/${NAME}_masks_1"

WEIGHT_PATH=ckpts/all_sequences/$NAME/${EXP_NAME}/${NAME}.ckpt

python train.py --test --encode_w \
                --root_dir $ROOT_DIRECTORY \
                --log_save_path $LOG_SAVE_PATH \
                --mask_dir $MASK_DIRECTORY \
                --weight_path $WEIGHT_PATH \
                --gpus $GPUS \
                --config configs/${NAME}/${EXP_NAME}.yaml \
                --exp_name ${EXP_NAME} \
                --save_deform False

运行脚本文件:

bash scripts/mm_test_multi.sh mm base

四、错误处理

1. windows不支持NCCL backend

Windows RuntimeError: Distributed package doesn't have NCCL built in

2. wsgiref-0.1.2

SyntaxError: Missing parentheses in call to 'print'. Did you mean print(...)?

pip install ./wsgiref-0.1.2

相关推荐
迅易科技1 小时前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神2 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
梧桐树04294 小时前
python常用内建模块:collections
python
AI_NEW_COME4 小时前
知识库管理系统可扩展性深度测评
人工智能
Dream_Snowar4 小时前
速通Python 第三节
开发语言·python
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类