springcloud alibaba-Sentinel

文章目录


一.前置知识

1.雪崩问题

设想一下以下场景:

服务A需要调用服务D实现某种功能,但服务D因为某种原因宕机了,导致请求服务A实现调用服务D的请求结果一直得不到响应,服务A中等待的线程数越积越多,从而超出Tomcat服务器所能承受的线程数,导致了服务A也宕机了,这种情况也会导致后面请求服务A的服务宕机,从而导致整个微服务不可用。

总而言之:微服务调用链路中的某个服务故障,引起整个链路中的所有微服务都不可用,这就是雪崩。

那么该如何解决雪崩问题呢?

解决雪崩问题的常见方式有四种:

1.超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

2.舱壁模式:限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。

3.熔断降级:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

4.流量控制:限制业务访问的QPS(每秒查询率),避免服务因流量的突增而故障。

2.服务保护技术对比

二.Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。

官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

  • 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

  • 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

  • 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

  • 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。


安装Sentinel控制台:

github下载jar包: https://github.com/alibaba/Sentinel/releases

在无中文目录下使用java -jar启动服务即可

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

三.微服务整合Sentinel

1.引入sentinel依赖:

复制代码
		<!--sentinel-->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
        </dependency>

2.配置控制台地址:

复制代码
spring:
      cloud:
            sentinel:
                  transport:
                    dashboard: localhost:8080

3.访问微服务的任意端点,触发sentinel监控(即访问任意Controller下的Restful接口即可)

1.限流规则

簇点链路

簇点链路:就是项目内的调用链路,链路中被监控的每个接口就是一个资源,默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。表单中可以添加流控规则,如下图所示:

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。


1.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式:

  • 直接 :统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式

  • 关联 :统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

  • 链路 :统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

1.流控模式-关联

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是有限支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

图片解释:当write到达单机阈值后,对read做限流(对哪个端点做限流就在哪个端点添加限流规则)

总结:满足下面条件可以使用关联模式:

  • 两个有竞争关系的资源
  • 一个优先级较高,一个优先级较低

2.流控模式-链路

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

例如有两条请求链路:

/test1/common和/test2/common

如果只希望从/test2进入到/common的请求做限流,则可以这样配置:

需要注意的是,如果两个服务调用同一个业务接口,需要对业务接口添加资源即使其成为簇点链路

Sentinel默认只标记Controller中的方法为资源,如果要标记其它方法,需要利用@SentinelResource注解,示例:

Sentinel默认会将Controller方法做context整合,导致链路模式的流控失效,需要修改application.yml,添加配置:

添加配置后,可以看到链路不基于一个根(sentinel_spring_web_context)了:

2.流控效果

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长


流控效果-warm up

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 threshold / coldFactor,持续指定时长后,逐渐提高到threshold值。而coldFactor的默认值是3.

例如,我设置QPS的threshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

流控效果-排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待超过2000ms的请求会被拒绝并抛出异常

热点参数限流(更细粒度的限流方式)

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

在热点参数限流的高级选项中,可以对部分参数设置例外配置:

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

如果参数值是100,则每1秒允许的QPS为10

如果参数值是101,则每1秒允许的QPS为15

注意:需要使用@SentinelResource注解添加方法为资源

2.隔离和降级

隔离和降级

虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

Feign整合Sentinel

1.修改OrderService的application.yml文件,开启Feign的Sentinel功能

复制代码
feign:
  sentinel:
    enabled: true #开启Feign的Sentinel功能

2.给FeignClient编写失败后的降级逻辑

  • 方式一:FallbackClass,无法对远程调用的异常做处理
  • 方式二(推荐):FallbackFactory,可以对远程调用的异常做处理

步骤二具体实现方法:

在feing-api项目中定义类,实现FallbackFactory:

复制代码
@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return id -> {
            log.error("查询用户失败", throwable);
            return new User();
        };
    }
}

在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

复制代码
@Bean
    public UserClientFallbackFactory userClientFallback(){return new UserClientFallbackFactory();}

在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

复制代码
@FeignClient(value = "userservice",fallbackFactory = UserClientFallbackFactory.class)

1.线程隔离

线程隔离有两种方式实现:

1.线程池隔离

在线程隔离中,采用的是创建多个有限容量的线程池,当有服务访问时使用线程池里面的线程,当出现服务宕机时,线程会被占用,从而导致线程池无可用资源(线程),从而进行隔离

2.信号量隔离(Sentinel默认采用)

在信号量隔离中,采用的是创建一个计数器,当有请求访问服务时,计数器使固定的信号量减一,当服务出现宕机,因为线程被阻塞不能归还信号量,导致信号量值逐渐减为空,请求无法继续访问服务,从而实现隔离

信号量隔离和线程池隔离的对比:

高扇出:一个服务依赖于多个服务,低扇出则反之


sentinel默认实现的是信号量隔离

在实现了sentinel整合feign后,sentinel可以监控资源feign中的UserClient中的Restful API,如下图所示:

点击流控,设置舱壁模式

在添加限流规则时,可以选择两种阈值类型:

QPS:每秒的请求数

线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现舱壁模式。

2.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器熔断策略有三种:慢调用、异常比例、异常数

1.熔断策略-慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。例如:


解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

2.熔断策略-异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。例如:

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

3.授权规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

例如,我们限定只允许从网关来的请求访问order-service,那么流控应用中就填写网关的名称

实现方式:

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。故需要先实现解析请求头来源

1.在需要访问的服务加上请求来源解析

复制代码
//配置请求头来源解析器
@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest httpServletRequest) {
        String header = httpServletRequest.getHeader("origin");

        if(StringUtils.isEmpty(header)){
            return "blank";
        }else{
            return header;
        }
    }
}

2.在gateway过滤器中添加请求头信息

复制代码
- AddRequestHeader=origin,gateway

3.配置授权规则:

来自浏览器的请求被拦截:

来自网关的请求不会被拦截:

具体流程为:


自定义异常结果自定义异常结果

上面的截图可以看到请求被拦截依然显示是限流异常,故需要修改默认抛出异常的消息.默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

而BlockException包含很多个子类,分别对应不同的场景:

以访问order-service为例子:

复制代码
@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;

        if (e instanceof FlowException) {
            msg = "请求被限流了";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级了";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }

        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

测试从浏览器直接访问结果:

可以看到实现接口BlockExceptionHandler后自定义异常生效.

4.规则持久化

规则管理模式

Sentinel的控制台规则管理有三种模式:

规则管理模式-原始模式

原始模式:控制台配置的规则直接推送到Sentinel客户端,也就是我们的应用。然后保存在内存中,服务重启则丢失

规则管理模式-pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。

规则管理模式-push模式(推荐)

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

这里不进行实现了,很复杂,了解即可

相关推荐
程序员爱钓鱼几秒前
Python编程实战 - 函数与模块化编程 - 导入与使用模块
后端·python·ipython
程序员爱钓鱼4 分钟前
Python编程实战 - 函数与模块化编程 - 匿名函数(lambda)
后端·python·ipython
Moment4 分钟前
记录一次修改 PNPM 版本,部署 NextJs 服务时导致服务器崩溃的问题 😡😡😡
前端·javascript·后端
IT_陈寒19 分钟前
我用这5个JavaScript性能优化技巧,让页面加载速度提升了60%
前端·人工智能·后端
清空mega20 分钟前
Flask入门学习指南
后端·python·flask
风象南31 分钟前
SpringBoot 时间轮实现延时任务
后端
Victor35635 分钟前
Redis(93)Redis的数据加密机制是什么?
后端
Victor35637 分钟前
Redis(92)如何配置Redis的ACL?
后端
有你有我OK2 小时前
springboot Admin 服务端 客户端配置
spring boot·后端·elasticsearch
xiaoopin3 小时前
简单的分布式锁 SpringBoot Redisson‌
spring boot·分布式·后端