决策树 (人工智能期末复习)

几个重要概念

  • 信息熵:随机事件未按照某个属性的不同取值划分时的熵减去按照某个属性的不同取值划分时的平均

    熵。即前后两次熵的差值。

    表示事物的混乱程度,熵越大表示混乱程度越大,越小表示混乱程度越小。

    对于随机事件,如果它的取值有N种情况,每种情况发生的概率为P,那么这件事的熵为:

  • 信息增益:

  • 信息增益率:

    使用信息增益比上训练数据集D关于特征A的值的熵

  • 基尼系数

例题

其实主要还是背公式+计算不出错,等我考完另一门试再写。

(20年)设训练集如下表所示,请用经典的 ID3 算法完成其学习过程。


(19年)下表给出外国菜是否有吸引力的数据集,每个菜品有 3 个属性"温度"、"口味","份量",请用决策树算法画出决策树(根据信息增益)。并预测 dish= {温度=热,口味=甜,份量=大} 的一道菜,是否具有吸引力。


(18年)下表为是否适合打垒球的决策表,请用决策树算法画出决策树,并请预测 E= {天气=晴,温度=适中,湿度=正常,风速=弱} 的场合,是否合适打垒球。


(17年)设使用ID3算法进行归纳学习的输入实例集S={ i | 1≤ i ≤ 7 }如下表所示。学习的目标是用属性A、B、C预测属性F。

(1)写出集合S分别以属性A、B、C作为测试属性的熵的增益Gain(S, A)、Gain(S, B)、Gain(S, C)的表达式。

(2)属性A、B、C中哪个应该作为决策树根节点的测试属性?


考虑下面一个数据集,它记录了某学生多次考试的情况,请根据提供的数据按要求构建决策树。

(1)根据信息增益率选择第一个属性,构建一个深度为1的决策树(根结点深度为1)。

(2)根据信息增益率构建完整的决策树。请回答,这两个决策树的决策结果是否和训练数据一致,并解释说明。

设样本集合如下表格,其中A、B、C是F的属性,请根据信息增益标准(ID3算法),画出F的决策树。

相关推荐
带娃的IT创业者10 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
调皮的芋头34 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Logout:4 小时前
[AI]docker封装包含cuda cudnn的paddlepaddle PaddleOCR
人工智能·docker·paddlepaddle
OJAC近屿智能4 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习