决策树 (人工智能期末复习)

几个重要概念

  • 信息熵:随机事件未按照某个属性的不同取值划分时的熵减去按照某个属性的不同取值划分时的平均

    熵。即前后两次熵的差值。

    表示事物的混乱程度,熵越大表示混乱程度越大,越小表示混乱程度越小。

    对于随机事件,如果它的取值有N种情况,每种情况发生的概率为P,那么这件事的熵为:

  • 信息增益:

  • 信息增益率:

    使用信息增益比上训练数据集D关于特征A的值的熵

  • 基尼系数

例题

其实主要还是背公式+计算不出错,等我考完另一门试再写。

(20年)设训练集如下表所示,请用经典的 ID3 算法完成其学习过程。


(19年)下表给出外国菜是否有吸引力的数据集,每个菜品有 3 个属性"温度"、"口味","份量",请用决策树算法画出决策树(根据信息增益)。并预测 dish= {温度=热,口味=甜,份量=大} 的一道菜,是否具有吸引力。


(18年)下表为是否适合打垒球的决策表,请用决策树算法画出决策树,并请预测 E= {天气=晴,温度=适中,湿度=正常,风速=弱} 的场合,是否合适打垒球。


(17年)设使用ID3算法进行归纳学习的输入实例集S={ i | 1≤ i ≤ 7 }如下表所示。学习的目标是用属性A、B、C预测属性F。

(1)写出集合S分别以属性A、B、C作为测试属性的熵的增益Gain(S, A)、Gain(S, B)、Gain(S, C)的表达式。

(2)属性A、B、C中哪个应该作为决策树根节点的测试属性?


考虑下面一个数据集,它记录了某学生多次考试的情况,请根据提供的数据按要求构建决策树。

(1)根据信息增益率选择第一个属性,构建一个深度为1的决策树(根结点深度为1)。

(2)根据信息增益率构建完整的决策树。请回答,这两个决策树的决策结果是否和训练数据一致,并解释说明。

设样本集合如下表格,其中A、B、C是F的属性,请根据信息增益标准(ID3算法),画出F的决策树。

相关推荐
AI绘画哇哒哒6 分钟前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
CNRio1 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll1 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计5 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
金智维科技官方6 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙6 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147426 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
阿龙AI日记6 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友6 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能
找方案6 小时前
新型智慧城市城市大数据应用解决方案
人工智能·智慧城市