gpt3、gpt2与gpt1区别

参考:深度学习:GPT1、GPT2、GPT-3_HanZee的博客-CSDN博客

Zero-shot Learning / One-shot Learning-CSDN博客

Zero-shot(零次学习)简介-CSDN博客

GPT-2 模型由多层单向transformer的解码器部分构成,本质上是自回归模型,自回归的意思是指,每次产生新单词后,将新单词加到原输入句后面,作为新的输入句

gpt2与gpt1区别:

1.模型架构上变得更大,参数量达到了1.5B,数据集改为百万级别的WebText,,Bert当时最大的参数数量为0.34B,但是作者发现模型架构与数据集都扩大的情况下,与同时期的Bert的优势并不大。

2.gpt2 pre-training方法与gpt1一致,但在做下游任务时,不再进行微调,只进行简单的Zero-Shot,就能与同时期微调后的模型性能相差不大。

Zero-Shot( 零次学习),成品模型对于训练集中没有出现过的类别,能自动创造出相应的映射: XX -> YY。利用训练集数据训练模型,使得模型能够对测试集的对象进行分类,但是训练集类别和测试集类别之间没有交集;期间需要借助类别的描述,来建立训练集和测试集之间的联系,从而使得模型有效。

Zero-Shot表现在GPT2中就是在训练样本中加入了下游任务的相关描述(从而在测试集上给出一个没在pre-training时训练的任务例如句子分类,gpt2也能执行?):

3.在模型结构上,调整了每个block Layer Normalization的位置

gpt3与gpt2区别:

GPT3 可以理解为 GPT2 的升级版,使用了 45TB 的训练数据,拥有 175B 的参数量

GPT3 主要提出了两个概念:

情景(in-context)学习:就是对模型进行引导,教会它应当输出什么内容,比如翻译任务可以采用输入:请把以下英文翻译为中文:Today is a good day。这样模型就能够基于这一场景做出回答了,其实跟 GPT2 中不同任务的 token 有异曲同工之妙,只是表达更加完善、更加丰富了。

Zero-shot, one-shot and few-shot:GPT3 打出的口号就是"告别微调的 GPT3",它可以通过不使用一条样例的 Zero-shot、仅使用一条样例的 One-shot 和使用少量样例的 Few-shot 来完成推理任务。下面是对比微调模型和 GPT3 三种不同的样本推理形式图。

相关推荐
zhaosuyuan11 天前
InstructGPT 2022详细解读
gpt·语言模型·llm·gpt-3
后端小张21 天前
【AI 学习】解锁Claude Skills:开启AI应用新维度
人工智能·深度学习·学习·自然语言处理·gpt-3·claude·skill
努力的小Qin1 个月前
oneapi私有化部署failed to get gpt-3.5-turbo token encoder解决方案
gpt-3·oneapi·fastgpt
后端小张1 个月前
【TextIn大模型加速器 + 火山引擎】TextIn大模型加速器与火山引擎协同构建智能文档处理新范式
人工智能·学习·数据挖掘·langchain·tensorflow·gpt-3·火山引擎
梦帮科技1 个月前
第二十三篇:自然语言工作流生成:GPT-4集成实战
人工智能·python·机器学习·开源·gpt-3·极限编程
后端小张1 个月前
【AI 学习】LangChain框架深度解析:从核心组件到企业级应用实战
java·人工智能·学习·langchain·tensorflow·gpt-3·ai编程
聊天QQ:180809512 个月前
16 位 SAR ADC 逐次逼近型 ADC 模拟集成电路设计探秘
gpt-3
19226382 个月前
simpack软件的模型以及教程,包括基础的教程还有rail方向的教程。 (教程包括pdf、视...
gpt-3
Study9962 个月前
【电子书】大语言模型综述(391页)
人工智能·语言模型·自然语言处理·大模型·llm·gpt-3·大模型综述
TTGGGFF2 个月前
AI 十大论文精讲(二):GPT-3 论文全景解析——大模型 + 提示词如何解锁 “举一反三” 能力?
人工智能·gpt-3