大语言模型预训练数据——数据采样方法介绍以GPT3为例

大语言模型预训练数据------数据采样方法介绍以GPT3为例

一、数据采样核心逻辑

这是 GPT - 3 训练时的数据集配置,核心是非等比例采样------不按数据集原始大小分配训练占比,而是人工设定不同数据集在训练中被抽取的概率(Weight in training mix ),让小数据集也能被多次学习,大数据集适当降低重复度,平衡模型学习广度与深度。

二、各列数据含义

  1. Dataset:训练 GPT - 3 用到的数据集,像 Common Crawl 是网页抓取数据,Wikipedia 是维基百科内容,Books1/2 是书籍文本等,覆盖不同来源、不同类型的语料。
  2. Quantity (tokens):每个数据集的token总量 ,比如 Common Crawl (filtered) 有 4100 亿 token,代表该数据集文本转成模型可处理的 token 后,总数量是这么多。
  3. Weight in training mix :训练时,从该数据集抽取样本的概率占比 。比如 Common Crawl 占 60%,意味着每一轮训练选样本,60%的概率从它这里选,和数据集本身大小无严格比例关系,是人为调的"采样权重"。
  4. Epochs elapsed when training for 300B tokens :当整体训练到 3000 亿 token 时,该数据集被"完整过几遍(Epoch )"。计算逻辑是:
    • 先算训练 3000 亿 token 时,从该数据集实际用了多少 token:3000 亿 × 该数据集权重
    • 再用"实际用的 token 量 ÷ 该数据集总 token 量",得到被训练的轮次(Epoch )。
    • 举个例子,以 Wikipedia 为例:
      • 按权重,训练 3000 亿 token 时,用了 3000 亿×3% = 90 亿 token
      • Wikipedia 总 token 是 30 亿,所以 Epoch = 90 亿÷30 亿 = 3.4 ,即被完整学习约 3.4 遍;同理,Common Crawl 是 3000 亿×60% = 1800 亿 token ,除以 4100 亿总 token,得到约 0.44 轮。

简单说,就是通过"自定义采样权重"打破数据集大小限制,让不同数据按需被模型学习多轮,最终"Epochs"体现的是:在 3000 亿总训练量下,单个数据集被重复学习的次数 ,背后是"权重×总训练量÷数据集自身大小"的计算逻辑。

相关推荐
机器之心1 分钟前
2026年,大模型训练的下半场属于「强化学习云」
人工智能·openai
ai_top_trends6 分钟前
2026 年工作计划 PPT 横评:AI 自动生成的优劣分析
人工智能·python·powerpoint
踏浪无痕34 分钟前
架构师如何学习 AI:三个月掌握核心能力的务实路径
人工智能·后端·程序员
闲看云起43 分钟前
大模型应用开发框架全景图
人工智能·语言模型·ai编程
万行1 小时前
机器学习&第三章
人工智能·python·机器学习·数学建模·概率论
木卫四科技1 小时前
DocETL 入门:让非结构化数据处理变得简单智能
人工智能·木卫四
玖日大大1 小时前
OceanBase SeekDB:AI 原生数据库的技术革命与实践指南
数据库·人工智能·oceanbase
小润nature1 小时前
Spec-Driven Development (SDD) 框架与开源 AI 智能体-意图的进化
人工智能·开源
后端小肥肠1 小时前
复刻10W+爆款视频!我用Coze搭了个“人物故事”自动流水线,太香了!
人工智能·aigc·coze
轻竹办公PPT1 小时前
2026 年工作计划 PPT 内容拆解,对比不同 AI 生成思路
人工智能·python·powerpoint