大语言模型预训练数据——数据采样方法介绍以GPT3为例

大语言模型预训练数据------数据采样方法介绍以GPT3为例

一、数据采样核心逻辑

这是 GPT - 3 训练时的数据集配置,核心是非等比例采样------不按数据集原始大小分配训练占比,而是人工设定不同数据集在训练中被抽取的概率(Weight in training mix ),让小数据集也能被多次学习,大数据集适当降低重复度,平衡模型学习广度与深度。

二、各列数据含义

  1. Dataset:训练 GPT - 3 用到的数据集,像 Common Crawl 是网页抓取数据,Wikipedia 是维基百科内容,Books1/2 是书籍文本等,覆盖不同来源、不同类型的语料。
  2. Quantity (tokens):每个数据集的token总量 ,比如 Common Crawl (filtered) 有 4100 亿 token,代表该数据集文本转成模型可处理的 token 后,总数量是这么多。
  3. Weight in training mix :训练时,从该数据集抽取样本的概率占比 。比如 Common Crawl 占 60%,意味着每一轮训练选样本,60%的概率从它这里选,和数据集本身大小无严格比例关系,是人为调的"采样权重"。
  4. Epochs elapsed when training for 300B tokens :当整体训练到 3000 亿 token 时,该数据集被"完整过几遍(Epoch )"。计算逻辑是:
    • 先算训练 3000 亿 token 时,从该数据集实际用了多少 token:3000 亿 × 该数据集权重
    • 再用"实际用的 token 量 ÷ 该数据集总 token 量",得到被训练的轮次(Epoch )。
    • 举个例子,以 Wikipedia 为例:
      • 按权重,训练 3000 亿 token 时,用了 3000 亿×3% = 90 亿 token
      • Wikipedia 总 token 是 30 亿,所以 Epoch = 90 亿÷30 亿 = 3.4 ,即被完整学习约 3.4 遍;同理,Common Crawl 是 3000 亿×60% = 1800 亿 token ,除以 4100 亿总 token,得到约 0.44 轮。

简单说,就是通过"自定义采样权重"打破数据集大小限制,让不同数据按需被模型学习多轮,最终"Epochs"体现的是:在 3000 亿总训练量下,单个数据集被重复学习的次数 ,背后是"权重×总训练量÷数据集自身大小"的计算逻辑。

相关推荐
小蜜蜂爱编程16 小时前
deep learning简介
人工智能·深度学习
IT_陈寒16 小时前
SpringBoot实战避坑指南:我在微服务项目中总结的12条高效开发经验
前端·人工智能·后端
AI优秘企业大脑16 小时前
需求洞察助力战略规划实现潜在市场机会
大数据·人工智能
Learn Beyond Limits16 小时前
Clustering vs Classification|聚类vs分类
人工智能·算法·机器学习·ai·分类·数据挖掘·聚类
诸葛务农16 小时前
光电对抗分类及外场静爆试验操作规程
人工智能·嵌入式硬件·分类·数据挖掘
TG:@yunlaoda360 云老大16 小时前
谷歌发布 Veo 3.1 视频生成模型:有声电影、长视频叙事与人物定制的实测与展望
人工智能·音视频·googlecloud
大连好光景16 小时前
LSTM模型做分类任务2(PyTorch实现)
人工智能·pytorch·lstm
阿里巴巴淘系技术团队官网博客16 小时前
让AI打出丝滑连招:编码-部署-自测-改bug
人工智能·bug
LeonDL16817 小时前
基于YOLO11深度学习的电梯内车辆识别系统【Python源码+Pyqt5界面+数据集+安装使用教程+训练代码】【附下载链接】
人工智能·python·深度学习·pyqt5·yolo数据集·yolo11深度学习·电梯内车辆识别系统
熊猫_豆豆18 小时前
用AI训练数据,预测房地产价格走势(Python版)
人工智能·ai模型·房产预测