大语言模型预训练数据——数据采样方法介绍以GPT3为例

大语言模型预训练数据------数据采样方法介绍以GPT3为例

一、数据采样核心逻辑

这是 GPT - 3 训练时的数据集配置,核心是非等比例采样------不按数据集原始大小分配训练占比,而是人工设定不同数据集在训练中被抽取的概率(Weight in training mix ),让小数据集也能被多次学习,大数据集适当降低重复度,平衡模型学习广度与深度。

二、各列数据含义

  1. Dataset:训练 GPT - 3 用到的数据集,像 Common Crawl 是网页抓取数据,Wikipedia 是维基百科内容,Books1/2 是书籍文本等,覆盖不同来源、不同类型的语料。
  2. Quantity (tokens):每个数据集的token总量 ,比如 Common Crawl (filtered) 有 4100 亿 token,代表该数据集文本转成模型可处理的 token 后,总数量是这么多。
  3. Weight in training mix :训练时,从该数据集抽取样本的概率占比 。比如 Common Crawl 占 60%,意味着每一轮训练选样本,60%的概率从它这里选,和数据集本身大小无严格比例关系,是人为调的"采样权重"。
  4. Epochs elapsed when training for 300B tokens :当整体训练到 3000 亿 token 时,该数据集被"完整过几遍(Epoch )"。计算逻辑是:
    • 先算训练 3000 亿 token 时,从该数据集实际用了多少 token:3000 亿 × 该数据集权重
    • 再用"实际用的 token 量 ÷ 该数据集总 token 量",得到被训练的轮次(Epoch )。
    • 举个例子,以 Wikipedia 为例:
      • 按权重,训练 3000 亿 token 时,用了 3000 亿×3% = 90 亿 token
      • Wikipedia 总 token 是 30 亿,所以 Epoch = 90 亿÷30 亿 = 3.4 ,即被完整学习约 3.4 遍;同理,Common Crawl 是 3000 亿×60% = 1800 亿 token ,除以 4100 亿总 token,得到约 0.44 轮。

简单说,就是通过"自定义采样权重"打破数据集大小限制,让不同数据按需被模型学习多轮,最终"Epochs"体现的是:在 3000 亿总训练量下,单个数据集被重复学习的次数 ,背后是"权重×总训练量÷数据集自身大小"的计算逻辑。

相关推荐
Shawn_Shawn2 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
技术路上的探险家4 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like4 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a4 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者5 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗5 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_6 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信6 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235866 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活