LCM-LoRA:a universal stable-diffusion acceleration module

Consistency is All You Need - wrong.wang什么都不用做生成却快了十倍其实也并非完全不可能https://wrong.wang/blog/20231111-consistency-is-all-you-need/

1.Stable diffusion实在预训练VAE空间训练diffusion model的结果。

2.consistency decoder是用consistency model技术训练的一个VAE的decoder,能更好的解码VAE latent为RGB的图片,DALLE3开源了lcm decoder,可以和VAE兼容使用。

3.Stable diffusion经过consistency model蒸馏技术蒸馏后得到latent consistency model。

4.既然lcm是对sd的一个finetune过程,那么就可以结合lora finetune技术,不再微调整个sd模型,而是微调个lora,得到lcm-lora,得到1.5,ssd-1b和sdxl三个版本的lcm-lora。

5.lcm-lora可以和其他sd的风格微调模型组合,依然有用,那就不用训练其他的sd模型的lora了,这些sd模型,直接用lcm-lora就可以加速。

LCM需要微调整个sd模型,consistency model本身可以和sd的网络结构完全一致,但是diffusion model作为ODE,其Solver可以有多种,可以采用硬解法的Solver,比如DPM++等,consistency model解ODE实际上通过的是函数f,f是通过蒸馏得到的,LCM就是在sd基础上利用consistency model蒸馏的,在VAE的潜空间中。社区中一大堆基于sd微调出来的模型难道都要优化一下,才能使用使用lcm技术加速求解吗,这也太麻烦了,于是除了lcm-lora。既然lcm是对sd的一个微调过程,只是换了一个loss,那就可以使用lora,只用lcm的蒸馏损失优化lora的权重。

lcm-lora为什么能和之前各种提供style的sd lora直接加权使用呢?

1.lora把finetune增量矩阵限制成了低秩矩阵,两个低秩权重增量矩阵做加权冲突没那么大。

2.微调过程中diffusion前向的数据分布没有改变,lcm-lora训练过程中仍然用到了diffusion去噪,保证模型输出不会偏移原分布太多,从Zn+k预测的\hatZn依然接近真实Zn的分布。

lcm-lora训练过程中已经把guidance scale集成进去了,但是如果negative prompt对结果很重要,可以指定guidance scale为1.5试试。

相关推荐
Blossom.1181 天前
大模型AI Agent实战:ReAct框架从零实现与金融研报分析系统
人工智能·学习·react.js·stable diffusion·金融·aigc·知识图谱
A达峰绮1 天前
从FP16到FP8:我是如何让Stable Diffusion 3.5提速40%而不丢画质的
人工智能·stable diffusion
tap.AI1 天前
(二)Stable Diffusion 3.5硬件准备与环境配置 —— 低配显卡也能跑大模型
人工智能·stable diffusion
tap.AI2 天前
(一)初识 Stable Diffusion 3.5 —— 下一代多模态架构详解
人工智能·stable diffusion
_妲己3 天前
stable diffusion的MLSD直线(AI室内设计)
人工智能·stable diffusion
斯文by累3 天前
Stable Diffusion 3.5 FP8:高效文生图技术革命
人工智能·stable diffusion
csdn_aspnet3 天前
Stable Diffusion 3.5 FP8 的应用场景探索
人工智能·stable diffusion·fp8·sd3.5
多仔ヾ4 天前
Stable Diffusion AIGC 视觉设计实战教程之 06-提示词应用技巧
stable diffusion·aigc
_妲己7 天前
SD的细分功能包括重绘,图像处理、放大等扩散模型应用
人工智能·python·深度学习·机器学习·stable diffusion·comfyui·ai工作流
二院大蛙9 天前
Stable Diffusion 3.5 FP8在农业无人机航拍模拟图中的地形还原精度
stable diffusion· fp8· 农业无人机