LCM-LoRA:a universal stable-diffusion acceleration module

Consistency is All You Need - wrong.wang什么都不用做生成却快了十倍其实也并非完全不可能https://wrong.wang/blog/20231111-consistency-is-all-you-need/

1.Stable diffusion实在预训练VAE空间训练diffusion model的结果。

2.consistency decoder是用consistency model技术训练的一个VAE的decoder,能更好的解码VAE latent为RGB的图片,DALLE3开源了lcm decoder,可以和VAE兼容使用。

3.Stable diffusion经过consistency model蒸馏技术蒸馏后得到latent consistency model。

4.既然lcm是对sd的一个finetune过程,那么就可以结合lora finetune技术,不再微调整个sd模型,而是微调个lora,得到lcm-lora,得到1.5,ssd-1b和sdxl三个版本的lcm-lora。

5.lcm-lora可以和其他sd的风格微调模型组合,依然有用,那就不用训练其他的sd模型的lora了,这些sd模型,直接用lcm-lora就可以加速。

LCM需要微调整个sd模型,consistency model本身可以和sd的网络结构完全一致,但是diffusion model作为ODE,其Solver可以有多种,可以采用硬解法的Solver,比如DPM++等,consistency model解ODE实际上通过的是函数f,f是通过蒸馏得到的,LCM就是在sd基础上利用consistency model蒸馏的,在VAE的潜空间中。社区中一大堆基于sd微调出来的模型难道都要优化一下,才能使用使用lcm技术加速求解吗,这也太麻烦了,于是除了lcm-lora。既然lcm是对sd的一个微调过程,只是换了一个loss,那就可以使用lora,只用lcm的蒸馏损失优化lora的权重。

lcm-lora为什么能和之前各种提供style的sd lora直接加权使用呢?

1.lora把finetune增量矩阵限制成了低秩矩阵,两个低秩权重增量矩阵做加权冲突没那么大。

2.微调过程中diffusion前向的数据分布没有改变,lcm-lora训练过程中仍然用到了diffusion去噪,保证模型输出不会偏移原分布太多,从Zn+k预测的\hatZn依然接近真实Zn的分布。

lcm-lora训练过程中已经把guidance scale集成进去了,但是如果negative prompt对结果很重要,可以指定guidance scale为1.5试试。

相关推荐
Liudef069 小时前
Stable Diffusion LoRA模型训练:图片收集与处理完全攻略
人工智能·stable diffusion
是你的小熊啊1 天前
stable diffusion 本地部署教程 2025最新版
stable diffusion
不会kao代码的小王2 天前
DeepSeek-R1国产大模型实战:从私有化部署到内网穿透远程使用全攻略
学习·安全·ai·stable diffusion·开源
love530love2 天前
stable diffusion webui 更改为python3.11版本运行Windows11
stable diffusion·python3.11
放羊郎2 天前
本地文生图使用插件(Stable Diffusion)
stable diffusion·prompt·插件
ai问道武曲3 天前
ai画图comfyUI节点式工作流,私有化本地部署。stable diffusion 一键安装三秒出图。
人工智能·ai·ai作画·stable diffusion·aigc
小蒋的技术栈记录3 天前
第三课:Stable Diffusion图生图入门及应用
stable diffusion
尚早立志4 天前
mac m3 pro 部署 stable diffusion webui
stable diffusion·aigc
是馄饨呀5 天前
【AI】MAC版本本地Stable Diffusion web ui安装
人工智能·stable diffusion
西木风落5 天前
stable diffusion本地安装
stable diffusion·diffusion自动生成