LCM-LoRA:a universal stable-diffusion acceleration module

Consistency is All You Need - wrong.wang什么都不用做生成却快了十倍其实也并非完全不可能https://wrong.wang/blog/20231111-consistency-is-all-you-need/

1.Stable diffusion实在预训练VAE空间训练diffusion model的结果。

2.consistency decoder是用consistency model技术训练的一个VAE的decoder,能更好的解码VAE latent为RGB的图片,DALLE3开源了lcm decoder,可以和VAE兼容使用。

3.Stable diffusion经过consistency model蒸馏技术蒸馏后得到latent consistency model。

4.既然lcm是对sd的一个finetune过程,那么就可以结合lora finetune技术,不再微调整个sd模型,而是微调个lora,得到lcm-lora,得到1.5,ssd-1b和sdxl三个版本的lcm-lora。

5.lcm-lora可以和其他sd的风格微调模型组合,依然有用,那就不用训练其他的sd模型的lora了,这些sd模型,直接用lcm-lora就可以加速。

LCM需要微调整个sd模型,consistency model本身可以和sd的网络结构完全一致,但是diffusion model作为ODE,其Solver可以有多种,可以采用硬解法的Solver,比如DPM++等,consistency model解ODE实际上通过的是函数f,f是通过蒸馏得到的,LCM就是在sd基础上利用consistency model蒸馏的,在VAE的潜空间中。社区中一大堆基于sd微调出来的模型难道都要优化一下,才能使用使用lcm技术加速求解吗,这也太麻烦了,于是除了lcm-lora。既然lcm是对sd的一个微调过程,只是换了一个loss,那就可以使用lora,只用lcm的蒸馏损失优化lora的权重。

lcm-lora为什么能和之前各种提供style的sd lora直接加权使用呢?

1.lora把finetune增量矩阵限制成了低秩矩阵,两个低秩权重增量矩阵做加权冲突没那么大。

2.微调过程中diffusion前向的数据分布没有改变,lcm-lora训练过程中仍然用到了diffusion去噪,保证模型输出不会偏移原分布太多,从Zn+k预测的\hatZn依然接近真实Zn的分布。

lcm-lora训练过程中已经把guidance scale集成进去了,但是如果negative prompt对结果很重要,可以指定guidance scale为1.5试试。

相关推荐
源客z13 小时前
搭建 Stable Diffusion 图像生成系统并通过 Ngrok 暴露到公网(实现本地系统网络访问)——项目记录
stable diffusion
朴拙数科2 天前
Stable Diffusion秋叶整合包V4独立版Python本地API连接指南
开发语言·python·stable diffusion
璇转的鱼4 天前
爆肝整理!Stable Diffusion的完全使用手册(二)
人工智能·ai作画·stable diffusion·aigc
曲幽4 天前
Stable Diffusion LoRA模型加载实现风格自由
python·ai·stable diffusion·lora·文生图·diffusers
nan_black6 天前
在Pycharm配置stable diffusion环境(使用conda虚拟环境)
stable diffusion·pycharm·conda
AI绘画咪酱7 天前
Stable Diffusion【进阶篇】:如何实现人脸一致
人工智能·深度学习·学习·机器学习·ai作画·stable diffusion
AIGC-Lison7 天前
AI绘画SD中,如何保持生成人物角色脸部一致?Stable Diffusion精准控制AI人像一致性两种实用方法教程!
人工智能·ai作画·stable diffusion·midjourney·sd
AI绘画咪酱8 天前
SD教程|巧用Stable Diffusion,实现不同风格的LOGO设计|实战篇幅,建议收藏!
人工智能·学习·ai作画·stable diffusion·sd
AI绘画咪酱9 天前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·学习·macos·ai作画·stable diffusion·aigc
源客z11 天前
Stable Diffusion +双Contronet:从 ControlNet 边缘图到双条件融合:实现服装图像生成的技术演进——项目学习记录
图像处理·人工智能·计算机视觉·stable diffusion