Python对数组/矩阵进行累加-累乘-累除

在本文中,我们将介绍Numpy中的累加和累乘运算。累加/累乘是指在一个数组中按照一定的规则对元素进行相加或相乘的操作,通常返回一个新的数组。

累加运算

在Numpy中,我们可以使用cumsum函数对数组进行累加运算。cumsum函数将数组每个元素顺序相加,并返回一个新的数组:

python 复制代码
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(np.cumsum(arr))  # [ 1  3  6 10 15]

上述例子中,我们定义了一个数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

另外,我们还可以对多维数组进行累加运算。在这种情况下,cumsum函数将按照行major的顺序逐个计算累加值,相当于先对行进行累加,然后对每个行的累加结果再进行累加:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr))  # [ 1  3  6 10 15 21 28 36 45]

上述例子中,我们定义了一个2维的数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

累乘运算

在Numpy中,我们可以使用cumprod函数对数组进行累乘运算。cumprod函数将数组每个元素顺序相乘,并返回一个新的数组:

python 复制代码
arr = np.array([1, 2, 3, 4, 5])
print(np.cumprod(arr))  # [  1   2   6  24 120]

上述例子中,我们定义了一个数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

与累加运算类似,我们还可以对多维数组进行累乘运算。在这种情况下,cumprod函数将按照行major的顺序逐个计算累乘值,相当于先对行进行累乘,然后对每个行的累乘结果再进行累乘:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumprod(arr))  # [      1       2       6      24     120     720    5040   40320  362880]

上述例子中,我们定义了一个2维的数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

累加/累乘的轴向计算

在Numpy中,cumsum和cumprod函数可以沿着指定的轴进行计算。我们可以通过axis参数指定要进行累加/累乘的轴:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr, axis=0))  # [[ 1  2  3]
                                #  [ 5  7  9]
                                #  [12 15 18]]
print(np.cumsum(arr, axis=1))  # [[ 1  3  6]
                                #  [ 4  9 15]
                                #  [ 7 15 24]]
print(np.cumprod(arr, axis=0))  # [[  1   2   3]
                                #  [  4  10  18]
                                #  [ 28  80 162]]
print(np.cumprod(arr, axis=1))  # [[1  2  6]
                                #  [ 4 20 120]
                                #  [ 7 56 504]]

The above see https://deepinout.com/numpy/numpy-questions/1043_numpy_cumulative_additionmultiplication_in_numpy.html

python 复制代码
import numpy as np

# 创建一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])

# 对矩阵的每一列进行累加
cumulative_sum = np.cumsum(matrix, axis=0)

print(cumulative_sum)

# 对矩阵的每一行进行累加
cumulative_sum = np.cumsum(matrix, axis=1)
print(cumulative_sum)
python 复制代码
[[ 1  2  3]
 [ 5  7  9]
 [12 15 18]]
`
[[ 1  3  6]
 [ 4  9 15]
 [ 7 15 24]]
``
相关推荐
倔强青铜三6 分钟前
苦练Python第23天:元组秘籍与妙用
人工智能·python·面试
Norvyn_730 分钟前
LeetCode|Day18|20. 有效的括号|Python刷题笔记
笔记·python·leetcode
chao_7891 小时前
更灵活方便的初始化、清除方法——fixture【pytest】
服务器·自动化测试·python·pytest
心情好的小球藻1 小时前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥1 小时前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
惜.己1 小时前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
都叫我大帅哥3 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`5 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
写写闲篇儿7 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
杭州杭州杭州8 小时前
Python笔记
开发语言·笔记·python