Python对数组/矩阵进行累加-累乘-累除

在本文中,我们将介绍Numpy中的累加和累乘运算。累加/累乘是指在一个数组中按照一定的规则对元素进行相加或相乘的操作,通常返回一个新的数组。

累加运算

在Numpy中,我们可以使用cumsum函数对数组进行累加运算。cumsum函数将数组每个元素顺序相加,并返回一个新的数组:

python 复制代码
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(np.cumsum(arr))  # [ 1  3  6 10 15]

上述例子中,我们定义了一个数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

另外,我们还可以对多维数组进行累加运算。在这种情况下,cumsum函数将按照行major的顺序逐个计算累加值,相当于先对行进行累加,然后对每个行的累加结果再进行累加:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr))  # [ 1  3  6 10 15 21 28 36 45]

上述例子中,我们定义了一个2维的数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

累乘运算

在Numpy中,我们可以使用cumprod函数对数组进行累乘运算。cumprod函数将数组每个元素顺序相乘,并返回一个新的数组:

python 复制代码
arr = np.array([1, 2, 3, 4, 5])
print(np.cumprod(arr))  # [  1   2   6  24 120]

上述例子中,我们定义了一个数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

与累加运算类似,我们还可以对多维数组进行累乘运算。在这种情况下,cumprod函数将按照行major的顺序逐个计算累乘值,相当于先对行进行累乘,然后对每个行的累乘结果再进行累乘:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumprod(arr))  # [      1       2       6      24     120     720    5040   40320  362880]

上述例子中,我们定义了一个2维的数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

累加/累乘的轴向计算

在Numpy中,cumsum和cumprod函数可以沿着指定的轴进行计算。我们可以通过axis参数指定要进行累加/累乘的轴:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr, axis=0))  # [[ 1  2  3]
                                #  [ 5  7  9]
                                #  [12 15 18]]
print(np.cumsum(arr, axis=1))  # [[ 1  3  6]
                                #  [ 4  9 15]
                                #  [ 7 15 24]]
print(np.cumprod(arr, axis=0))  # [[  1   2   3]
                                #  [  4  10  18]
                                #  [ 28  80 162]]
print(np.cumprod(arr, axis=1))  # [[1  2  6]
                                #  [ 4 20 120]
                                #  [ 7 56 504]]

The above see https://deepinout.com/numpy/numpy-questions/1043_numpy_cumulative_additionmultiplication_in_numpy.html

python 复制代码
import numpy as np

# 创建一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])

# 对矩阵的每一列进行累加
cumulative_sum = np.cumsum(matrix, axis=0)

print(cumulative_sum)

# 对矩阵的每一行进行累加
cumulative_sum = np.cumsum(matrix, axis=1)
print(cumulative_sum)
python 复制代码
[[ 1  2  3]
 [ 5  7  9]
 [12 15 18]]
`
[[ 1  3  6]
 [ 4  9 15]
 [ 7 15 24]]
``
相关推荐
吴佳浩25 分钟前
Python入门指南-AI模型相似性检测方法:技术原理与实现
人工智能·python·llm
叶 落35 分钟前
计算阶梯电费
python·python 基础·python 入门
Python大数据分析@1 小时前
Origin、MATLAB、Python 用于科研作图,哪个最好?
开发语言·python·matlab
编程零零七2 小时前
Python巩固训练——第一天练习题
开发语言·python·python基础·python学习·python练习题
Zonda要好好学习2 小时前
Python入门Day4
java·网络·python
小龙在山东3 小时前
Python 包管理工具 uv
windows·python·uv
weixin_307779133 小时前
批量OCR的GitHub项目
python·github·ocr
孤狼warrior4 小时前
灰色预测模型
人工智能·python·算法·数学建模
神仙别闹4 小时前
基于Python实现LSTM对股票走势的预测
开发语言·python·lstm
机器学习之心5 小时前
小波增强型KAN网络 + SHAP可解释性分析(Pytorch实现)
人工智能·pytorch·python·kan网络