Python对数组/矩阵进行累加-累乘-累除

在本文中,我们将介绍Numpy中的累加和累乘运算。累加/累乘是指在一个数组中按照一定的规则对元素进行相加或相乘的操作,通常返回一个新的数组。

累加运算

在Numpy中,我们可以使用cumsum函数对数组进行累加运算。cumsum函数将数组每个元素顺序相加,并返回一个新的数组:

python 复制代码
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(np.cumsum(arr))  # [ 1  3  6 10 15]

上述例子中,我们定义了一个数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

另外,我们还可以对多维数组进行累加运算。在这种情况下,cumsum函数将按照行major的顺序逐个计算累加值,相当于先对行进行累加,然后对每个行的累加结果再进行累加:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr))  # [ 1  3  6 10 15 21 28 36 45]

上述例子中,我们定义了一个2维的数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

累乘运算

在Numpy中,我们可以使用cumprod函数对数组进行累乘运算。cumprod函数将数组每个元素顺序相乘,并返回一个新的数组:

python 复制代码
arr = np.array([1, 2, 3, 4, 5])
print(np.cumprod(arr))  # [  1   2   6  24 120]

上述例子中,我们定义了一个数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

与累加运算类似,我们还可以对多维数组进行累乘运算。在这种情况下,cumprod函数将按照行major的顺序逐个计算累乘值,相当于先对行进行累乘,然后对每个行的累乘结果再进行累乘:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumprod(arr))  # [      1       2       6      24     120     720    5040   40320  362880]

上述例子中,我们定义了一个2维的数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

累加/累乘的轴向计算

在Numpy中,cumsum和cumprod函数可以沿着指定的轴进行计算。我们可以通过axis参数指定要进行累加/累乘的轴:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr, axis=0))  # [[ 1  2  3]
                                #  [ 5  7  9]
                                #  [12 15 18]]
print(np.cumsum(arr, axis=1))  # [[ 1  3  6]
                                #  [ 4  9 15]
                                #  [ 7 15 24]]
print(np.cumprod(arr, axis=0))  # [[  1   2   3]
                                #  [  4  10  18]
                                #  [ 28  80 162]]
print(np.cumprod(arr, axis=1))  # [[1  2  6]
                                #  [ 4 20 120]
                                #  [ 7 56 504]]

The above see https://deepinout.com/numpy/numpy-questions/1043_numpy_cumulative_additionmultiplication_in_numpy.html

python 复制代码
import numpy as np

# 创建一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])

# 对矩阵的每一列进行累加
cumulative_sum = np.cumsum(matrix, axis=0)

print(cumulative_sum)

# 对矩阵的每一行进行累加
cumulative_sum = np.cumsum(matrix, axis=1)
print(cumulative_sum)
python 复制代码
[[ 1  2  3]
 [ 5  7  9]
 [12 15 18]]
`
[[ 1  3  6]
 [ 4  9 15]
 [ 7 15 24]]
``
相关推荐
蹦蹦跳跳真可爱5891 小时前
Python----计算机视觉处理(Opencv:道路检测之提取车道线)
python·opencv·计算机视觉
Tanecious.3 小时前
机器视觉--python基础语法
开发语言·python
ALe要立志成为web糕手4 小时前
SESSION_UPLOAD_PROGRESS 的利用
python·web安全·网络安全·ctf
Tttian6225 小时前
Python办公自动化(3)对Excel的操作
开发语言·python·excel
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
独好紫罗兰6 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
DREAM.ZL7 小时前
基于python的电影数据分析及可视化系统
开发语言·python·数据分析
Uncertainty!!8 小时前
python函数装饰器
开发语言·python·装饰器
吾日三省吾码8 小时前
Python 脚本:自动化你的日常任务
数据库·python·自动化
snowfoootball9 小时前
基于 Ollama DeepSeek、Dify RAG 和 Fay 框架的高考咨询 AI 交互系统项目方案
前端·人工智能·后端·python·深度学习·高考