Python对数组/矩阵进行累加-累乘-累除

在本文中,我们将介绍Numpy中的累加和累乘运算。累加/累乘是指在一个数组中按照一定的规则对元素进行相加或相乘的操作,通常返回一个新的数组。

累加运算

在Numpy中,我们可以使用cumsum函数对数组进行累加运算。cumsum函数将数组每个元素顺序相加,并返回一个新的数组:

python 复制代码
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(np.cumsum(arr))  # [ 1  3  6 10 15]

上述例子中,我们定义了一个数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

另外,我们还可以对多维数组进行累加运算。在这种情况下,cumsum函数将按照行major的顺序逐个计算累加值,相当于先对行进行累加,然后对每个行的累加结果再进行累加:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr))  # [ 1  3  6 10 15 21 28 36 45]

上述例子中,我们定义了一个2维的数组arr,然后使用cumsum函数对其进行累加运算,并将结果输出到控制台。

累乘运算

在Numpy中,我们可以使用cumprod函数对数组进行累乘运算。cumprod函数将数组每个元素顺序相乘,并返回一个新的数组:

python 复制代码
arr = np.array([1, 2, 3, 4, 5])
print(np.cumprod(arr))  # [  1   2   6  24 120]

上述例子中,我们定义了一个数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

与累加运算类似,我们还可以对多维数组进行累乘运算。在这种情况下,cumprod函数将按照行major的顺序逐个计算累乘值,相当于先对行进行累乘,然后对每个行的累乘结果再进行累乘:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumprod(arr))  # [      1       2       6      24     120     720    5040   40320  362880]

上述例子中,我们定义了一个2维的数组arr,然后使用cumprod函数对其进行累乘运算,并将结果输出到控制台。

累加/累乘的轴向计算

在Numpy中,cumsum和cumprod函数可以沿着指定的轴进行计算。我们可以通过axis参数指定要进行累加/累乘的轴:

python 复制代码
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.cumsum(arr, axis=0))  # [[ 1  2  3]
                                #  [ 5  7  9]
                                #  [12 15 18]]
print(np.cumsum(arr, axis=1))  # [[ 1  3  6]
                                #  [ 4  9 15]
                                #  [ 7 15 24]]
print(np.cumprod(arr, axis=0))  # [[  1   2   3]
                                #  [  4  10  18]
                                #  [ 28  80 162]]
print(np.cumprod(arr, axis=1))  # [[1  2  6]
                                #  [ 4 20 120]
                                #  [ 7 56 504]]

The above see https://deepinout.com/numpy/numpy-questions/1043_numpy_cumulative_additionmultiplication_in_numpy.html

python 复制代码
import numpy as np

# 创建一个矩阵
matrix = np.array([[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]])

# 对矩阵的每一列进行累加
cumulative_sum = np.cumsum(matrix, axis=0)

print(cumulative_sum)

# 对矩阵的每一行进行累加
cumulative_sum = np.cumsum(matrix, axis=1)
print(cumulative_sum)
python 复制代码
[[ 1  2  3]
 [ 5  7  9]
 [12 15 18]]
`
[[ 1  3  6]
 [ 4  9 15]
 [ 7 15 24]]
``
相关推荐
a努力。15 小时前
字节Java面试被问:TCP的BBR拥塞控制算法原理
java·开发语言·python·tcp/ip·elasticsearch·面试·职场和发展
费弗里15 小时前
一个小技巧轻松提升Dash应用debug效率
python·dash
小小测试开发15 小时前
Python浮点型常用方法全解析:从基础到实战
python
ValhallaCoder15 小时前
Day53-图论
数据结构·python·算法·图论
lpfasd12316 小时前
PyGithub用法详解
git·python·github
给我来一根16 小时前
用户认证与授权:使用JWT保护你的API
jvm·数据库·python
白云千载尽16 小时前
LQR与MPC.入门知识与实验
python·控制·mpc·lqr
weixin_4331793317 小时前
Hangman 猜字游戏使用列表List实现
开发语言·python
52Hz11817 小时前
二叉树理论、力扣94.二叉树的中序遍历、104.二叉树的最大深度、226.反转二叉树、101.对称二叉树
python·算法·leetcode
无风听海17 小时前
CBOW 模型中输入矩阵、输出矩阵与词表向量矩阵深入解析
人工智能·机器学习·矩阵