11.30BST理解,AVL树操作,定义;快速幂,二分求矩阵幂(未完)

完全二叉树结点的度可能有1,满二叉树的度只能为0或2

BST构建

BST是左孩子都比根节点小,右孩子都比根节点大

二叉搜索树的插入,删除,调整

平衡树理解

任何一个平衡二叉树,它的中序遍历都是一样的,都是有序的从小到大

之所以有调整,就是谁当根节点不同导致的。

作为根节点,就需要提供两个信息,一个是左孩子,一个是右孩子。

那么中序遍历的过程就是,先由根节点向左一直蔓延,直到到底,然后从左到右依次遍历,遍历到根节点,再从根节点向右遍历蔓延。想象一个有序序列,找到任意一个起点,这个起点就是所谓的树的根节点,那么中序遍历就是左根右,即从左到右,就是从起点(根节点)先一直向左,到底后再逐个输出,那就是中序序列。有这样的性质,就是因为左根右,序列中的每个结点左侧都是它的左孩子,它的右侧都是右孩子或者父母结点

即,左侧只会是左孩子,但右侧可能是右孩子或父母节点,但由于左孩子都小于根节点,所以一旦有右孩子,那么只能先是右孩子,即右孩子的优先级大于父母结点,因为右孩子一定小于父母节点。

AVL树

平衡因子是根节点的定义,即根节点的左右孩子高度差

如这里是4的平衡因子不满足条件,其左子树,右子树高度差大于1

求高度函数

复制代码
typedef struct node {
    int data;
    node* lchild, * rchild;
}*tree;
int high(tree root) {
    if (root) {
        return max(high(root->lchild), high(root->rchild)) + 1;
    }
    return 0;
}

AVL树的构建

AVL树的调整

中序遍历都是一样的,不一样的就是根节点的确定,即起点的确定

右旋

右旋的具体步骤:
  • T向右旋转成为L的右结点
  • L的右节点Y 放到 T的左孩子上

如何判断是否为AVL

AVL树高度

由于AVL树的左右子树都是AVL树,

自变量是N,AVL树的高度。那么由于AVL树左右平衡,根节点平衡,所以对于高度为d的AVL树,根节点占一层,那么左子树(默认左子树高一点)高度为d-1,(此时加起来为d);右子树高度为d-2,因为要满足左右子树高度差不大于1而且结点要尽可能少,所以有

二分求矩阵的幂

快速幂

相关推荐
闲看云起12 小时前
LeetCode-day5:三数之和
算法·leetcode·职场和发展
Xの哲學12 小时前
Linux 文件系统一致性: 从崩溃恢复到 Journaling 机制
linux·服务器·算法·架构·边缘计算
wtmReiner12 小时前
山东大学数值计算2026.1大三上期末考试回忆版
笔记·算法
黛色正浓12 小时前
leetCode-热题100-滑动窗口合集(JavaScript)
javascript·算法·leetcode
漫随流水13 小时前
leetcode算法(145.二叉树的后序遍历)
数据结构·算法·leetcode·二叉树
Tony_yitao13 小时前
22.华为OD机试真题:数组拼接(Java实现,100分通关)
java·算法·华为od·algorithm
2501_9418752813 小时前
在东京复杂分布式系统中构建统一可观测性平台的工程设计实践与演进经验总结
c++·算法·github
sonadorje13 小时前
梯度下降法的迭代步骤
算法·机器学习
漫随流水13 小时前
leetcode算法(94.二叉树的中序遍历)
数据结构·算法·leetcode·二叉树
王老师青少年编程13 小时前
信奥赛C++提高组csp-s之并查集(案例实践)2
数据结构·c++·并查集·csp·信奥赛·csp-s·提高组