11.30BST理解,AVL树操作,定义;快速幂,二分求矩阵幂(未完)

完全二叉树结点的度可能有1,满二叉树的度只能为0或2

BST构建

BST是左孩子都比根节点小,右孩子都比根节点大

二叉搜索树的插入,删除,调整

平衡树理解

任何一个平衡二叉树,它的中序遍历都是一样的,都是有序的从小到大

之所以有调整,就是谁当根节点不同导致的。

作为根节点,就需要提供两个信息,一个是左孩子,一个是右孩子。

那么中序遍历的过程就是,先由根节点向左一直蔓延,直到到底,然后从左到右依次遍历,遍历到根节点,再从根节点向右遍历蔓延。想象一个有序序列,找到任意一个起点,这个起点就是所谓的树的根节点,那么中序遍历就是左根右,即从左到右,就是从起点(根节点)先一直向左,到底后再逐个输出,那就是中序序列。有这样的性质,就是因为左根右,序列中的每个结点左侧都是它的左孩子,它的右侧都是右孩子或者父母结点

即,左侧只会是左孩子,但右侧可能是右孩子或父母节点,但由于左孩子都小于根节点,所以一旦有右孩子,那么只能先是右孩子,即右孩子的优先级大于父母结点,因为右孩子一定小于父母节点。

AVL树

平衡因子是根节点的定义,即根节点的左右孩子高度差

如这里是4的平衡因子不满足条件,其左子树,右子树高度差大于1

求高度函数

typedef struct node {
    int data;
    node* lchild, * rchild;
}*tree;
int high(tree root) {
    if (root) {
        return max(high(root->lchild), high(root->rchild)) + 1;
    }
    return 0;
}

AVL树的构建

AVL树的调整

中序遍历都是一样的,不一样的就是根节点的确定,即起点的确定

右旋

右旋的具体步骤:
  • T向右旋转成为L的右结点
  • L的右节点Y 放到 T的左孩子上

如何判断是否为AVL

AVL树高度

由于AVL树的左右子树都是AVL树,

自变量是N,AVL树的高度。那么由于AVL树左右平衡,根节点平衡,所以对于高度为d的AVL树,根节点占一层,那么左子树(默认左子树高一点)高度为d-1,(此时加起来为d);右子树高度为d-2,因为要满足左右子树高度差不大于1而且结点要尽可能少,所以有

二分求矩阵的幂

快速幂

相关推荐
kali-Myon2 小时前
ctfshow-web入门-JWT(web345-web350)
前端·学习·算法·web安全·node.js·web·jwt
神洛华4 小时前
datawhale11月组队学习 模型压缩技术3:2:4结构稀疏化BERT模型
深度学习·算法·bert
南宫生4 小时前
力扣-Hot100-二叉树其二【算法学习day.33】
java·数据结构·学习·算法·leetcode·动态规划
trueEve5 小时前
SQL,力扣题目1126,查询活跃业务
算法·leetcode·职场和发展
别开生面的阿杰5 小时前
蓝桥杯-洛谷刷题-day3(C++)
c++·算法·蓝桥杯
Mr.W.T5 小时前
JVM垃圾回收详解(重点)
java·jvm·算法
___Dream5 小时前
算法闭关修炼百题计划(八)
算法
浮生如梦_7 小时前
Halcon 3D平面度
图像处理·算法·计算机视觉·平面·视觉检测
码农多耕地呗7 小时前
刷别的学校oj—河工大oj1073-1099
开发语言·c++·算法
苓诣7 小时前
反转链表
数据结构·链表