基于深度学习yolov5实现安全帽人体识别工地安全识别系统-反光衣识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

实现安全帽人体识别工地安全识别系统需要使用深度学习技术,特别是YOLOv5算法。下面是对基于YOLOv5实现安全帽人体识别系统的介绍:

  1. 背景和目标:

    安全帽人体识别系统是一种用于工地安全监控的智能系统,旨在检测工人是否佩戴安全帽并识别出人体。通过实时监测工人的安全状况,该系统可以及时发现安全隐患并采取相应措施,从而降低事故发生率。

  2. 技术原理:

    YOLOv5是一种基于深度学习的目标检测算法,可以实时检测和识别图像中的目标。该算法使用卷积神经网络(CNN)进行特征提取,并使用锚点、边界框和分类器来检测目标。在安全帽人体识别系统中,YOLOv5算法可以检测出佩戴安全帽的人体,并对其进行分类和定位。

  3. 系统架构:

    安全帽人体识别系统主要包括以下几个部分:

  • 摄像头采集图像:通过安装在工地上的摄像头采集图像。
  • YOLOv5算法模型:使用YOLOv5算法对采集到的图像进行实时检测和识别。
  • 数据库存储结果:将检测结果存储在数据库中,以便后续分析和处理。
  • 实时监控和报警:根据检测结果进行实时监控和报警,如发现未佩戴安全帽的工人,系统将发出警报并记录相关数据。
  1. 优势和应用场景:
    安全帽人体识别系统具有以下优势和应用场景:
  • 实时性:系统可以实时检测和识别图像中的目标,提高了监控的效率和准确性。
  • 准确性:YOLOv5算法具有较高的检测和识别准确率,可以准确检测佩戴安全帽的人体。
  • 安全性:通过实时监控和报警,可以及时发现安全隐患并采取相应措施,降低事故发生率。
  • 应用场景:该系统适用于各种工地场景,如建筑工地、道路施工、矿山开采等。
  1. 挑战和解决方案:
    实现安全帽人体识别系统面临一些挑战,如光照变化、遮挡和背景干扰等。为了解决这些问题,可以采用以下解决方案:
  • 优化算法模型:根据实际应用场景,对YOLOv5算法模型进行优化,提高检测和识别准确率。
  • 增强数据集:通过收集更多标注数据集,提高模型的泛化能力。
  • 实时处理和存储:采用高效的数据处理和存储技术,确保实时监控和报警的准确性。

二、功能

环境:Python3.10、OpenCV、torch、PyCharm

简介:因为网上能找到的数据集基本上都是只有安全帽识别或者只有反光衣识别的,于是自己标注了一个同时有安全帽、反光衣、人、锥桶(不想要锥桶的可以删掉)的数据集。能够同时实现安全帽、反光衣、锥桶、人体的识别,适用于工地安全识别代替人防,降低安全风险。有个图形界面,可以选择实现图片检测,视频检测,摄像头实时检测三种方式,也可以使用自己的数据集训练yolo模型。

数据类别:hat(安全帽)、person(人体)、reflect(反光衣)、fanghu(锥桶)

数据集大小:537张

标注格式:yolo txt格式

目录

-images

-labels(标注好的yolo txt格式)

类别

数据集包含4个类别

-安全帽(hat)

-反光衣(reflect)

-人(person)

-防护锥桶(fanghu)

可以同时识别安全帽、反光衣和人;利用YOLOv5训练后的准确率达到95以上。

准确率和召回率:

三、系统






四. 总结

总之,基于深度学习YOLOv5实现安全帽人体识别系统是一种有效的工地安全监控方法,可以提高监控效率和准确性,降低事故发生率。

相关推荐
Dev7z4 小时前
服装厂废料(边角料)YOLO格式分类检测数据集
yolo·服装厂废料·边角料
没学上了4 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好4 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
tianyuanwo4 小时前
合并XFS分区:将独立分区安全融入LVM的完整指南
安全·lvm
智驱力人工智能5 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案5 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
黑客思维者6 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
2501_945837436 小时前
云服务器的防护体系构建之道
网络·安全
北山小恐龙6 小时前
卷积神经网络(CNN)与Transformer
深度学习·cnn·transformer
汗流浃背了吧,老弟!7 小时前
为什么RAG在多轮对话中可能表现不佳?
人工智能·深度学习