概率论之 证明 正态分布的上a 分位点的对称的性质

公式(Z(a) = -Z(1-a)) 表示正态分布的上(a)分位点与下(1-a)分位点在分布曲线上关于均值的对称性。

  1. 左侧 (Z(a)): 这是分布曲线上累积概率为(a)的那个点。也就是说,这是一个使得这个点及其左侧的面积占据整个曲线下方(a)的位置。

  2. 右侧 (Z(1-a)): 这是分布曲线上累积概率为(1-a)的点。它位于左侧 (Z(a)) 的对称位置,使得右侧的面积占据整个曲线下方(1-a)。

  3. 负号的作用: 负号表示这两个点在均值的不同方向。左侧 (Z(a)) 通常是正数,表示在均值的右侧;而右侧 (Z(1-a)) 通常是负数,表示在均值的左侧。负号就是将右侧 (Z(1-a)) 的位置调整到与左侧 (Z(a)) 对称。

  4. 对称性理解: 在标准正态分布中,分布曲线是关于均值对称的。因此,(Z(a) = -Z(1-a)) 表示左侧 (Z(a)) 和右侧 (Z(1-a)) 在均值两侧关于对称轴对称。

  5. 应用场景: 这个公式在统计学中常用于计算双侧置信区间。当我们想要找到一个区间,使得这个区间两侧的面积分别为(a/2)时,就可以利用这个对称性,使用 (Z(a) = -Z(1-a)) 的关系。

总体来说,这个公式反映了正态分布曲线的对称性质,使得上(a)分位点和下(1-a)分位点在均值两侧关于对称轴对称。


相关推荐
Researcher-Du1 天前
随机采样之接受拒绝采样
概率论
无水先生2 天前
ML 系列:机器学习和深度学习的深层次总结( 19)— PMF、PDF、平均值、方差、标准差
概率论
无水先生2 天前
ML 系列:机器学习和深度学习的深层次总结( 20)— 离散概率分布 (Bernoulli 分布)
概率论
卡洛驰2 天前
交叉熵损失函数详解
人工智能·深度学习·算法·机器学习·ai·分类·概率论
Ricciflows3 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
乔大将军4 天前
数理统计(第4章第2节:2元方差分析)
概率论
爱代码的小黄人6 天前
数学期望和联合概率密度
概率论
VisionX Lab6 天前
视频批量裁剪工具
音视频·概率论
无水先生6 天前
ML 系列:第 18 部 - 高级概率论:条件概率、随机变量和概率分布
概率论
AnitasCat8 天前
VAE原理及代码实现
人工智能·机器学习·概率论