概率论之 证明 正态分布的上a 分位点的对称的性质

公式(Z(a) = -Z(1-a)) 表示正态分布的上(a)分位点与下(1-a)分位点在分布曲线上关于均值的对称性。

  1. 左侧 (Z(a)): 这是分布曲线上累积概率为(a)的那个点。也就是说,这是一个使得这个点及其左侧的面积占据整个曲线下方(a)的位置。

  2. 右侧 (Z(1-a)): 这是分布曲线上累积概率为(1-a)的点。它位于左侧 (Z(a)) 的对称位置,使得右侧的面积占据整个曲线下方(1-a)。

  3. 负号的作用: 负号表示这两个点在均值的不同方向。左侧 (Z(a)) 通常是正数,表示在均值的右侧;而右侧 (Z(1-a)) 通常是负数,表示在均值的左侧。负号就是将右侧 (Z(1-a)) 的位置调整到与左侧 (Z(a)) 对称。

  4. 对称性理解: 在标准正态分布中,分布曲线是关于均值对称的。因此,(Z(a) = -Z(1-a)) 表示左侧 (Z(a)) 和右侧 (Z(1-a)) 在均值两侧关于对称轴对称。

  5. 应用场景: 这个公式在统计学中常用于计算双侧置信区间。当我们想要找到一个区间,使得这个区间两侧的面积分别为(a/2)时,就可以利用这个对称性,使用 (Z(a) = -Z(1-a)) 的关系。

总体来说,这个公式反映了正态分布曲线的对称性质,使得上(a)分位点和下(1-a)分位点在均值两侧关于对称轴对称。


相关推荐
西猫雷婶1 天前
scikit-learn/sklearn学习|广义线性回归损失函数的基本表达式
深度学习·神经网络·学习·机器学习·线性回归·scikit-learn·概率论
xz2024102****3 天前
最大似然估计:损失函数的底层数学原理
人工智能·算法·机器学习·概率论
kingmax542120083 天前
概率与数理统计公式及结论汇总
人工智能·机器学习·概率论
西猫雷婶4 天前
神经网络|(十九)概率论基础知识-伽马函数·下
人工智能·深度学习·神经网络·机器学习·回归·scikit-learn·概率论
西猫雷婶7 天前
神经网络|(十八)概率论基础知识-伽马函数溯源-阶乘的积分表达式
人工智能·深度学习·神经网络·机器学习·概率论
西猫雷婶11 天前
神经网络|(十六)概率论基础知识-伽马函数·中
人工智能·深度学习·神经网络·学习·机器学习·概率论
西西弗Sisyphus11 天前
大模型 多轮对话
语言模型·概率论·知识蒸馏
Jooou12 天前
机器学习:贝叶斯派和频率派
机器学习·概率论·贝叶斯派
simon_skywalker15 天前
概率论基础教程第六章 随机变量的联合分布(二)
概率论
simon_skywalker16 天前
概率论基础教程第5章 连续型随机变量(三)
概率论