概率论之 证明 正态分布的上a 分位点的对称的性质

公式(Z(a) = -Z(1-a)) 表示正态分布的上(a)分位点与下(1-a)分位点在分布曲线上关于均值的对称性。

  1. 左侧 (Z(a)): 这是分布曲线上累积概率为(a)的那个点。也就是说,这是一个使得这个点及其左侧的面积占据整个曲线下方(a)的位置。

  2. 右侧 (Z(1-a)): 这是分布曲线上累积概率为(1-a)的点。它位于左侧 (Z(a)) 的对称位置,使得右侧的面积占据整个曲线下方(1-a)。

  3. 负号的作用: 负号表示这两个点在均值的不同方向。左侧 (Z(a)) 通常是正数,表示在均值的右侧;而右侧 (Z(1-a)) 通常是负数,表示在均值的左侧。负号就是将右侧 (Z(1-a)) 的位置调整到与左侧 (Z(a)) 对称。

  4. 对称性理解: 在标准正态分布中,分布曲线是关于均值对称的。因此,(Z(a) = -Z(1-a)) 表示左侧 (Z(a)) 和右侧 (Z(1-a)) 在均值两侧关于对称轴对称。

  5. 应用场景: 这个公式在统计学中常用于计算双侧置信区间。当我们想要找到一个区间,使得这个区间两侧的面积分别为(a/2)时,就可以利用这个对称性,使用 (Z(a) = -Z(1-a)) 的关系。

总体来说,这个公式反映了正态分布曲线的对称性质,使得上(a)分位点和下(1-a)分位点在均值两侧关于对称轴对称。


相关推荐
Small___ming1 天前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
RE-19013 天前
《深入浅出统计学》学习笔记(二)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
Small___ming5 天前
【人工智能数学基础】什么是高斯分布/正态分布?
人工智能·概率论
Small___ming6 天前
【人工智能数学基础】如何理解方差与协方差?
人工智能·概率论
月疯7 天前
样本熵和泊松指数的计算流程!!!
算法·机器学习·概率论
zyq~7 天前
【课堂笔记】概率论-3
笔记·概率论
RE-19017 天前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
phoenix@Capricornus9 天前
样本与样本值
人工智能·机器学习·概率论
qq_ddddd11 天前
对于随机变量x1, …, xn,其和的范数平方的期望不超过n倍各随机变量范数平方的期望之和
人工智能·神经网络·线性代数·机器学习·概率论·1024程序员节
无风听海12 天前
神经网络之样本方差的无偏估计
人工智能·神经网络·概率论