概率论之 证明 正态分布的上a 分位点的对称的性质

公式(Z(a) = -Z(1-a)) 表示正态分布的上(a)分位点与下(1-a)分位点在分布曲线上关于均值的对称性。

  1. 左侧 (Z(a)): 这是分布曲线上累积概率为(a)的那个点。也就是说,这是一个使得这个点及其左侧的面积占据整个曲线下方(a)的位置。

  2. 右侧 (Z(1-a)): 这是分布曲线上累积概率为(1-a)的点。它位于左侧 (Z(a)) 的对称位置,使得右侧的面积占据整个曲线下方(1-a)。

  3. 负号的作用: 负号表示这两个点在均值的不同方向。左侧 (Z(a)) 通常是正数,表示在均值的右侧;而右侧 (Z(1-a)) 通常是负数,表示在均值的左侧。负号就是将右侧 (Z(1-a)) 的位置调整到与左侧 (Z(a)) 对称。

  4. 对称性理解: 在标准正态分布中,分布曲线是关于均值对称的。因此,(Z(a) = -Z(1-a)) 表示左侧 (Z(a)) 和右侧 (Z(1-a)) 在均值两侧关于对称轴对称。

  5. 应用场景: 这个公式在统计学中常用于计算双侧置信区间。当我们想要找到一个区间,使得这个区间两侧的面积分别为(a/2)时,就可以利用这个对称性,使用 (Z(a) = -Z(1-a)) 的关系。

总体来说,这个公式反映了正态分布曲线的对称性质,使得上(a)分位点和下(1-a)分位点在均值两侧关于对称轴对称。


相关推荐
啵啵鱼爱吃小猫咪5 小时前
机械臂能量分析
线性代数·机器学习·概率论
大江东去浪淘尽千古风流人物5 小时前
【VLN】VLN仿真与训练三要素 Dataset,Simulators,Benchmarks(2)
深度学习·算法·机器人·概率论·slam
学好statistics和DS7 小时前
概率论 核心公式总结
概率论
大江东去浪淘尽千古风流人物9 小时前
【VLN】VLN从理论到实践的完整指南VLN-Tutorial
机器人·大模型·概率论·端侧部署·巨身智能
大江东去浪淘尽千古风流人物1 天前
【LingBot-Depth】深度补全/单目深度估计算法/立体匹配算法
机器人·大模型·概率论·端侧部署·巨身智能
AI科技星3 天前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
Fleshy数模4 天前
从一条直线开始:线性回归的底层逻辑与实战
人工智能·机器学习·概率论
seeInfinite5 天前
面试常见数学概率题
概率论
木非哲6 天前
AB实验必修课(一):线性回归的深度重构与稳定性评估
线性回归·概率论·abtest
大江东去浪淘尽千古风流人物8 天前
【LingBot-Depth】Masked Depth Modeling for Spatial Perception
人工智能·算法·机器学习·概率论