gpt1与bert区别

区别1:网络结构(主要是Masked Multi-Head-Attention和Multi-Head-Attention)

gpt1使用transformer的decoder,单向编码,是一种基于语言模型的生成式模型,更适合生成下一个单词或句子

bert使用transformer的encoder,双向编码,适合处理需要理解整个句子或段落的任务。可以用于许多NLP任务,如分类、命名实体识别和句子关系判断等

区别2:预训练任务(主要是Masking Input)

有一个句子是台湾大学,GPT选取BOS这个起始Token,所对应的输出embedding,用h来表示。然后通过一个Linear Transform,再通过一个softmax,得到一个概率分布,我们希望这个输出的概率分布,跟正确答案的交叉熵越小越好。

在Bert的预训练任务中,Bert主要使用"填空题"的方式来完成预训练,当我们输入一个句子时,其中的一些词会被随机mask。可以用一个one-hot vector来表示这个字符,并使输出和one-hot vector之间的交叉熵损失最小。

相关推荐
min181123456几秒前
PC端零基础跨职能流程图制作教程
大数据·人工智能·信息可视化·架构·流程图
愚公搬代码14 分钟前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
静听松涛13318 分钟前
中文PC端多人协作泳道图制作平台
大数据·论文阅读·人工智能·搜索引擎·架构·流程图·软件工程
学历真的很重要39 分钟前
LangChain V1.0 Context Engineering(上下文工程)详细指南
人工智能·后端·学习·语言模型·面试·职场和发展·langchain
IT=>小脑虎39 分钟前
Python零基础衔接进阶知识点【详解版】
开发语言·人工智能·python
UnderTurrets1 小时前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo3641 小时前
pytorch深度学习笔记13
pytorch·笔记·深度学习
黄焖鸡能干四碗1 小时前
智能制造工业大数据应用及探索方案(PPT文件)
大数据·运维·人工智能·制造·需求分析
高洁011 小时前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
世岩清上1 小时前
乡村振兴主题展厅本土化材料运用与地域文化施工表达
大数据·人工智能·乡村振兴·展厅