【langchain实战】开源项目-RasaGPT

1、概述

RasaGpt是一个建立在 Rasa 和 Langchain 之上的没有显示界面的LMM聊天机器人平台。它是一个Rasa和Telegram这种利用像Langchain这样的LMM库进行索引、检索和上下文注入的样板及参考实现。
开源地址: GitHub - paulpierre/RasaGPT: 💬 RasaGPT is the first headless LLM chatbot platform built on top of Rasa and Langchain. Built w/ Rasa, FastAPI, Langchain, LlamaIndex, SQLModel, pgvector, ngrok, telegram

1.1 什么是rasa

Rasa is an open source (Python) machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants Rasa is a very popular (dare I say de facto?) and easy-enough to use chatbot framework with built in NLU ML pipelines that are obsolete and a conceptual starting point for a reimagined chatbot framework in a world of LLMs.

1.2 选择RasaGPT的原因

RasaGpt开箱即用。很多实现细节都已经处理好了,你不需要自己动手,包括:

  • 使用FastAPI创建你自己的专有bot端点,包括文档上传和"训练"流程。
  • 如何将Langchain/LlamaIndex和Rasa集成。
  • 与LLM库的库冲突和元数据传递。
  • 支持在MacOS上运行Rasa的Docker化。
  • 通过ngrok实现与聊天机器人的反向代理。
  • 使用你自己的定制模式的pgvector,而不是使用Langchain高度偏见的PGVector类。
  • 在Rasa和你自己的后端/应用程序之间添加多租户(Rasa本身不支持此功能)、会话和元数据。

2、快速安装

注意非 macOS 用户: 如果您正在使用 Linux 或 Windows,docker镜像需要 khalosa/rasa-aarch64:3.5.2 更改为 rasa/rasa:latest ,具体操作在 docker-compose.yml 的第64行 和 此处操作的 actions Dockerfile 的第1行。

复制代码
# 获取代码
git clone https://github.com/paulpierre/RasaGPT.git
cd RasaGPT


## 设置.env文件
cp .env-example .env


# 编辑您的.env文件并添加所有必要的凭证
make install

遇到问题:

复制代码
ailed to solve with frontend dockerfile.v0: failed to create LLB definition: unexpected status code [manifests 3.8-slim]: 403 Forbidden
ERROR: Service 'rasa-credentials' failed to build : Build failed
make[2]: *** [rasa-start] Error 1
make[1]: *** [rasa-train] Erro

解决方案:

Docker的安装过程大致分为以下步骤:
1.检查是否有.env文件可用
2.使用[pgvector](GitHub - pgvector/pgvector: Open-source vector similarity search for Postgres)初始化数据库
3.数据库模型创建数据库模式
4.训练Rasa模型,使其准备好运行
5.使用Rasa设置ngrok,以便Telegram具有回复您的API服务器的Webhook
6.设置Rasa actions服务器,以便Rasa可以与RasaGPT API进行通信
7.使用seed.py将数据库填充有虚拟数据

4、RasaGPT特性

4.1 完整应用程序和 API

  • LLM 使用 Langchain 对任意语料库进行"学习"•通过 FastAPI上传文档并进行"训练"
  • 支持文档版本控制,上传时自动执行"重新训练"
  • 可通过 FastAPI和 SQLModel自定义异步端点和数据库模型
  • 机器人可确定是否需要人工干预
  • 机器人可根据用户问题和响应自动生成标签
  • 包含完整的 API 文档,包括 Swagger 和 Redoc•包含 PGAdmin,以便您浏览数据库
  • 自动在启动时生成 Ngrok端点,因此始终可以通过 https://t.me/yourbotname 访问您的机器人
  • 利用 Postgres 自带的功能和 pgvector 实现嵌入式相似度搜索
  • 包含 虚拟数据,供您进行测试和实验•无限多的用例,包括帮助台、客户支持、测验、电子学习、地下城与巨龙等

4.2 Rasa 集成

基于 Rasa构建,这是聊天平台开源的黄金标准•支持 MacOS M1/M2,使用 Docker (标准 Rasa 镜像 不支持 MacOS 架构)
支持 Telegram,可轻松集成 Slack、Whatsapp、Line、SMS 等
利用 Huggingface 的 NLU 模型(如 BERT)或使用 Keras、Tensorflow 等库/框架来设置复杂的对话流水线,OpenAI GPT 作为备用方案

4.3 灵活性

利用Langchain扩展语言、记忆等能力
模式支持多租户、会话和数据存储
自定义代理人个性
保存所有聊天记录,并使用所有互动创建嵌入,未来可形成检索策略
自动从知识库语料库和客户反馈中生成嵌入

相关推荐
春天的菠菜4 小时前
【LangChain第2章】使用之Model I/O
langchain
idkmn_5 小时前
Agentic AI 基础概念
人工智能·python·深度学习·chatgpt·langchain
lusasky15 小时前
AgentScope、LangChain、AutoGen 全方位对比 + 混用可行性指南
microsoft·langchain
前端阿森纳1 天前
从产品经理视角拆解 LangChain 的抽象设计
langchain·llm·aigc
大模型真好玩1 天前
LangGraph1.0速通指南(一)—— LangGraph1.0 核心概念、点、边
人工智能·langchain·agent
阿里云云原生1 天前
AgentRun Sandbox SDK 正式开源!集成 LangChain 等主流框架,一键开启智能体沙箱新体验
阿里云·langchain·开源·serverless·agentarun
、、、、南山小雨、、、、1 天前
最简单的LangChain和RAG
langchain
路边草随风1 天前
langchain agent动态变更系统prompt
人工智能·python·langchain·prompt
Jack___Xue2 天前
LangChain实战快速入门笔记(六)--LangChain使用之Agent
笔记·langchain·unix
大模型教程2 天前
使用Langchain4j和Ollama3搭建RAG系统
langchain·llm·ollama