文本转图像 学习笔记

VQGAN (Vector Quantized Generative Adversarial Network) 是一种基于 GAN 的生成模型,可以将图像或文本转换为高质量的图像。

VQ (Vector Quantization)是一种数据压缩技术,是指将连续数据表示为离散化的向量。输入的图像或文本被映射到 VQ 空间中的离散化向量表示,然后,离散化向量然后被送到 GAN 模型中进行图像生成。(参见上图的下半部分)在训练过程中,VQGAN 模型会优化两个损失函数:一个用于量化误差(即离散化向量和连续值之间的误差),另一个用于生成器和判别器之间的对抗损失。

GAN 是由生成器和判别器两个模型组成的,生成器负责生成图像,判别器负责判断生成的图像是否为真实的图像。在训练过程中,生成器和判别器相互博弈,不断优化各自的参数,以使生成的图像更接近真实图像。

原文链接:https://blog.csdn.net/qq_42208244/article/details/132889927

VQGAN理论加代码一对一详解,小白向解析-CSDN博客

相关推荐
_落纸1 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
Alice-YUE1 天前
【CSS学习笔记3】css特性
前端·css·笔记·html
2303_Alpha1 天前
SpringBoot
笔记·学习
萘柰奈1 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity
沐矢羽1 天前
Tomcat PUT方法任意写文件漏洞学习
学习·tomcat
好奇龙猫1 天前
日语学习-日语知识点小记-进阶-JLPT-N1阶段蓝宝书,共120语法(10):91-100语法+考え方13
学习
向阳花开_miemie1 天前
Android音频学习(十八)——混音流程
学习·音视频
工大一只猿1 天前
51单片机学习
嵌入式硬件·学习·51单片机
c0d1ng1 天前
量子计算学习(第十四周周报)
学习·量子计算
Hello_Embed1 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件