什么是神经网络的非线性

大家好啊,我是董董灿。

最近在写《计算机视觉入门与调优》(右键,在新窗口中打开链接)的小册,其中一部分说到激活函数的时候,谈到了神经网络的非线性问题。

今天就一起来看看,为什么神经网络需要非线性,或者说为什么它是一个非线性系统。

1、线性系统是什么样的

先看一个基础知识:线性函数,这是我们在初中就学过的知识点。

假设有一个线性函数:y = kx + b, 这个函数画出来是下面的样子,也就是说, y 和 x 是线性关系。

而这个时候如果又有一个线性函数 z = hy + d,那么,我们可以推断出,变量 z 和 x 同样也是线性关系。

为什么呢? 可以通过下面的变换得到。

z = hy + d

= z(kx + b) + d

= zk x + zb + d

= zk(x) + (zb + d)

令 zk = K, zb + d = B,那么 z 和 x 的关系就可以写出 z = Kx + B

所以,z 和 x 同样是线性关系。

这里想说的一个原理是:多个线性系统的叠加,最终还会是线性系统。

2、神经网络是什么系统呢?

回到神经网络,我们知道卷积的算法公式是 y = x * w,,其中 x 是输入数据,w 是权值,中间的 * 代表卷积计算。关于卷积可以查看:5分钟搞懂卷积

那么x * w 是线性关系还是非线性关系呢?不好意思,就是线性关系。

这是因为卷积的核心计算是乘累加运算,所以,卷积算法也是线性的。

假设神经网络是由大量的卷积算法一层接着一层组成。如果没有非线性因素的引入,那么在数学模型上,这个大的卷积堆砌的模型就会退化成一个简单的线性模型,这就使得多层卷积失去了意义。

层数再多也没用,因为数学上等价于一个卷积,看下图解释的更清楚一些。

这就是原因所在。

所以在很多神经网络模型中,都需要引入非线性因素,从而使得神经网络模型可以拟合成更加复杂多变的非线性系统。

这样模型就可以处理复杂的任务,而不用担心模型在数学上仅仅是一个简单的线性模型了。

怎么引入非线性因素呢?

最常见的方法就是在卷积层后面增加一层非线性的激活层,这也是为什么在很多卷积算法后面,都能看到 relu 函数的原因。

延伸阅读,请参考:神经网络的非线性思想,真的神了

相关推荐
CoCo的编程之路2 分钟前
从“手写UI”到“智能生成”的工具深度评测
人工智能·ai编程·comate·智能编程助手·文心快码baiducomate
YH12312359h4 分钟前
YOLOv8_PST模型玉米生长阶段自动识别与分类
人工智能·yolo·分类
水如烟4 分钟前
孤能子视角:“隋唐“
人工智能
Aliex_git4 分钟前
Claude Code 使用笔记(一)- 配置和基础
人工智能·笔记·学习·ai编程
组合缺一28 分钟前
开发 Java MCP 就像写 Controller 一样简单,还支持 Java 8
java·人工智能·llm·solon·java8·mcp
檐下翻书17335 分钟前
免费在线工艺流程图制作工具_生产/化工/食品工艺流程绘制模板
人工智能·金融·架构·流程图·论文笔记·pcb工艺
GuoDongOrange44 分钟前
从 0 到 1 构建 AI 智能体——AI Agent 的工程化路径、行业范式与未来形态
人工智能·ai agent·智能体·智能体从0到1·从0到1构建智能体
极智-9961 小时前
GitHub 热榜项目-日榜精选(2026-01-24)| AI智能体工具、Python生态等 | remotion、VibeVoice、goose等
人工智能·python·github·ai智能体·大模型部署·语音ai
翱翔的苍鹰1 小时前
完整的“RNN + jieba 中文情感分析”项目之一:终极版
人工智能·rnn·深度学习
徐小夕@趣谈前端1 小时前
NO-CRM 2.0正式上线,Vue3+Echarts+NestJS实现的全栈CRM系统,用AI重新定义和实现客户管理系统
前端·javascript·人工智能·开源·编辑器·echarts