什么是神经网络的非线性

大家好啊,我是董董灿。

最近在写《计算机视觉入门与调优》(右键,在新窗口中打开链接)的小册,其中一部分说到激活函数的时候,谈到了神经网络的非线性问题。

今天就一起来看看,为什么神经网络需要非线性,或者说为什么它是一个非线性系统。

1、线性系统是什么样的

先看一个基础知识:线性函数,这是我们在初中就学过的知识点。

假设有一个线性函数:y = kx + b, 这个函数画出来是下面的样子,也就是说, y 和 x 是线性关系。

而这个时候如果又有一个线性函数 z = hy + d,那么,我们可以推断出,变量 z 和 x 同样也是线性关系。

为什么呢? 可以通过下面的变换得到。

z = hy + d

= z(kx + b) + d

= zk x + zb + d

= zk(x) + (zb + d)

令 zk = K, zb + d = B,那么 z 和 x 的关系就可以写出 z = Kx + B

所以,z 和 x 同样是线性关系。

这里想说的一个原理是:多个线性系统的叠加,最终还会是线性系统。

2、神经网络是什么系统呢?

回到神经网络,我们知道卷积的算法公式是 y = x * w,,其中 x 是输入数据,w 是权值,中间的 * 代表卷积计算。关于卷积可以查看:5分钟搞懂卷积

那么x * w 是线性关系还是非线性关系呢?不好意思,就是线性关系。

这是因为卷积的核心计算是乘累加运算,所以,卷积算法也是线性的。

假设神经网络是由大量的卷积算法一层接着一层组成。如果没有非线性因素的引入,那么在数学模型上,这个大的卷积堆砌的模型就会退化成一个简单的线性模型,这就使得多层卷积失去了意义。

层数再多也没用,因为数学上等价于一个卷积,看下图解释的更清楚一些。

这就是原因所在。

所以在很多神经网络模型中,都需要引入非线性因素,从而使得神经网络模型可以拟合成更加复杂多变的非线性系统。

这样模型就可以处理复杂的任务,而不用担心模型在数学上仅仅是一个简单的线性模型了。

怎么引入非线性因素呢?

最常见的方法就是在卷积层后面增加一层非线性的激活层,这也是为什么在很多卷积算法后面,都能看到 relu 函数的原因。

延伸阅读,请参考:神经网络的非线性思想,真的神了

相关推荐
whaosoft-1431 小时前
51c自动驾驶~合集7
人工智能
刘晓倩4 小时前
Coze智能体开发实战-多Agent综合实战
人工智能·coze
石迹耿千秋5 小时前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
路人蛃8 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
CV-杨帆8 小时前
论文阅读:arxiv 2025 A Survey of Large Language Model Agents for Question Answering
论文阅读·人工智能·语言模型
绝顶大聪明8 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
加百力9 小时前
AI助手竞争白热化,微软Copilot面临ChatGPT的9亿下载挑战
人工智能·microsoft·copilot
Danceful_YJ9 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
香蕉可乐荷包蛋10 小时前
AI算法之图像识别与分类
人工智能·学习·算法
张较瘦_11 小时前
[论文阅读] 人工智能 + 软件工程 | 当LLMs遇上顺序API调用:StateGen与StateEval如何破解测试难题?
论文阅读·人工智能