什么是神经网络的非线性

大家好啊,我是董董灿。

最近在写《计算机视觉入门与调优》(右键,在新窗口中打开链接)的小册,其中一部分说到激活函数的时候,谈到了神经网络的非线性问题。

今天就一起来看看,为什么神经网络需要非线性,或者说为什么它是一个非线性系统。

1、线性系统是什么样的

先看一个基础知识:线性函数,这是我们在初中就学过的知识点。

假设有一个线性函数:y = kx + b, 这个函数画出来是下面的样子,也就是说, y 和 x 是线性关系。

而这个时候如果又有一个线性函数 z = hy + d,那么,我们可以推断出,变量 z 和 x 同样也是线性关系。

为什么呢? 可以通过下面的变换得到。

z = hy + d

= z(kx + b) + d

= zk x + zb + d

= zk(x) + (zb + d)

令 zk = K, zb + d = B,那么 z 和 x 的关系就可以写出 z = Kx + B

所以,z 和 x 同样是线性关系。

这里想说的一个原理是:多个线性系统的叠加,最终还会是线性系统。

2、神经网络是什么系统呢?

回到神经网络,我们知道卷积的算法公式是 y = x * w,,其中 x 是输入数据,w 是权值,中间的 * 代表卷积计算。关于卷积可以查看:5分钟搞懂卷积

那么x * w 是线性关系还是非线性关系呢?不好意思,就是线性关系。

这是因为卷积的核心计算是乘累加运算,所以,卷积算法也是线性的。

假设神经网络是由大量的卷积算法一层接着一层组成。如果没有非线性因素的引入,那么在数学模型上,这个大的卷积堆砌的模型就会退化成一个简单的线性模型,这就使得多层卷积失去了意义。

层数再多也没用,因为数学上等价于一个卷积,看下图解释的更清楚一些。

这就是原因所在。

所以在很多神经网络模型中,都需要引入非线性因素,从而使得神经网络模型可以拟合成更加复杂多变的非线性系统。

这样模型就可以处理复杂的任务,而不用担心模型在数学上仅仅是一个简单的线性模型了。

怎么引入非线性因素呢?

最常见的方法就是在卷积层后面增加一层非线性的激活层,这也是为什么在很多卷积算法后面,都能看到 relu 函数的原因。

延伸阅读,请参考:神经网络的非线性思想,真的神了

相关推荐
蹦蹦跳跳真可爱58921 分钟前
Python----神经网络(基于DNN的风电功率预测)
人工智能·pytorch·python·深度学习·神经网络·dnn
Jackson@ML24 分钟前
一分钟了解机器学习
人工智能·机器学习
四万二千30 分钟前
5月16日复盘-目标检测开端
人工智能·目标检测·计算机视觉
带娃的IT创业者34 分钟前
《AI大模型应知应会100篇》第65篇:基于大模型的文档问答系统实现
人工智能
TGITCIC1 小时前
智脑进化:神经网络如何从单层感知机迈向深度学习新纪元
人工智能·深度学习·神经网络
妄想成为master1 小时前
计算机视觉----常见卷积汇总
人工智能·计算机视觉
jndingxin1 小时前
OpenCV CUDA 模块中用于在 GPU 上计算矩阵中每个元素的绝对值或复数的模函数abs()
人工智能·opencv
Code哈哈笑2 小时前
【机器学习】支持向量回归(SVR)从入门到实战:原理、实现与优化指南
人工智能·算法·机器学习·回归·svm
拓端研究室TRL2 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
loopdeloop2 小时前
预测模型开发与评估:基于机器学习的数据分析实践
人工智能