什么是神经网络的非线性

大家好啊,我是董董灿。

最近在写《计算机视觉入门与调优》(右键,在新窗口中打开链接)的小册,其中一部分说到激活函数的时候,谈到了神经网络的非线性问题。

今天就一起来看看,为什么神经网络需要非线性,或者说为什么它是一个非线性系统。

1、线性系统是什么样的

先看一个基础知识:线性函数,这是我们在初中就学过的知识点。

假设有一个线性函数:y = kx + b, 这个函数画出来是下面的样子,也就是说, y 和 x 是线性关系。

而这个时候如果又有一个线性函数 z = hy + d,那么,我们可以推断出,变量 z 和 x 同样也是线性关系。

为什么呢? 可以通过下面的变换得到。

z = hy + d

= z(kx + b) + d

= zk x + zb + d

= zk(x) + (zb + d)

令 zk = K, zb + d = B,那么 z 和 x 的关系就可以写出 z = Kx + B

所以,z 和 x 同样是线性关系。

这里想说的一个原理是:多个线性系统的叠加,最终还会是线性系统。

2、神经网络是什么系统呢?

回到神经网络,我们知道卷积的算法公式是 y = x * w,,其中 x 是输入数据,w 是权值,中间的 * 代表卷积计算。关于卷积可以查看:5分钟搞懂卷积

那么x * w 是线性关系还是非线性关系呢?不好意思,就是线性关系。

这是因为卷积的核心计算是乘累加运算,所以,卷积算法也是线性的。

假设神经网络是由大量的卷积算法一层接着一层组成。如果没有非线性因素的引入,那么在数学模型上,这个大的卷积堆砌的模型就会退化成一个简单的线性模型,这就使得多层卷积失去了意义。

层数再多也没用,因为数学上等价于一个卷积,看下图解释的更清楚一些。

这就是原因所在。

所以在很多神经网络模型中,都需要引入非线性因素,从而使得神经网络模型可以拟合成更加复杂多变的非线性系统。

这样模型就可以处理复杂的任务,而不用担心模型在数学上仅仅是一个简单的线性模型了。

怎么引入非线性因素呢?

最常见的方法就是在卷积层后面增加一层非线性的激活层,这也是为什么在很多卷积算法后面,都能看到 relu 函数的原因。

延伸阅读,请参考:神经网络的非线性思想,真的神了

相关推荐
事变天下1 分钟前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手2 分钟前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT4 分钟前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380212 分钟前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹13 分钟前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬15 分钟前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
极度畅想16 分钟前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
Dev7z19 分钟前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶
Java后端的Ai之路25 分钟前
【分析式AI】-过拟合(含生活案例说明)
人工智能·aigc·生活·过拟合·分析式ai
企业智能研究26 分钟前
数据分析Agent白皮书:揭秘Data x AI的底层逻辑与未来关键
大数据·人工智能·数据分析