推荐算法:HNSW【推荐出与用户搜索的类似的/用户感兴趣的商品】

HNSW算法概述

HNSW(Hierarchical Navigable Small Word)算法算是目前推荐领域里面常用的ANN(Approximate Nearest Neighbor)算法了。其目的就是在极大量的候选集当中如何快速地找到一个query最近邻的k个元素

要找到一个query的k个最近邻元素,一个朴素的思想就是我去计算这个query和所有的总量N 个候选元素的距离,然后选择其中的前k 个最小元素,这个经典算法的算法复杂度是O(Nlog(k)),显然这个算法复杂度实在是太高了,无法适用于实际的使用场景。

而要解决这个问题,可以有多种实现方法,这里所要说的HNSW算法就是目前比较常用的一种搜索算法,它算是其前作NSW算法的一个升级版本,但是两者的本质都是基于一个朴素的思路,就是通过图连接的方式给所有的N 个候选元素事先地定义好一个图连接关系,从而可以将前述的算法复杂度当中的N 的部分给减小掉,从而优化整体的检索效率

其整体的一个图结果可以用下图进行表达:

解决的问题做高效率相似性查找。推荐系统中,如何找到与用户query最相近的几个item,然后推荐出去【也就是推荐出与用户搜索的类似的/用户感兴趣的商品】

解决方法有:Annoy,KD-Tree, LSH, PQ,NSW, HNSW等。

近似最近邻搜索算法(Approximate Nearest Neighbor Search,ANNS)发展:近邻图(Proximity Graph)--> NSW --> Skip List --> HNSW

近似最近邻搜索算法(Approximate Nearest Neighbor Search,ANNS)

1. 近邻图(Proximity Graph)

近邻图(Proximity Graph): 最朴素的图算法

思路: 构建一张图, 每一个顶点连接着最近的 N 个顶点。 Target (红点)是待查询的向量。在搜索时, 选择任意一个顶点出发。 首先遍历它的友节点, 找到距离与 Target 最近的某一节点, 将其设置为起始节点, 再从它的友节点出发进行遍历, 反复迭代, 不断逼近, 最后找到与 Target 距离最近的节点时搜索结束。

存在的问题:

  1. 图中的K点无法被查询到。
  2. 如果要查找距离Target (红点)最近的topK个点, 而如果点之间无连线, 将影响查找效率。
  3. D点有这么多友节点吗? 增加了构造复杂度。谁是谁的友节点如何确定?
  4. 如果初始点选择地不好(比如很远),将进行多步查找。

2. NSW算法原理

NSW,即没有分层的可导航小世界的结构(Navigable-Small-World-Graph )。

针对上面的问题,解决办法:

  1. 某些点无法被查询到 -> 规定构图时所有节点必须有友节点。
  2. 相似点不相邻的问题 -> 规定构图时所有距离相近到一定程度的节点必须互为友节点。
  3. 关于某些点有过多友节点 -> 规定限制每个节点的友节点数量。
  4. 初始点选择地很远 -> 增加高速公路机制。

2.1 NSW构图算法

图中插入新节点时,通过随机存在的一个节点出发查找到距离新节点最近的m个节点(规定最多m个友节点,m由用户设置),连接新节点到这最近的m个节点。节点的友节点在新的节点插入的过程中会不断地被更新。

待更新...............

推荐算法:HNSW算法简介-CSDN博客

检索模型-粗排HNSW_hnsw模型-CSDN博客

相关推荐
Hao想睡觉34 分钟前
机器学习之随机森林(五)
人工智能·随机森林·机器学习
摆烂仙君37 分钟前
腾讯2025年校招笔试真题手撕(三)
算法
安全系统学习4 小时前
网络安全之身份验证绕过漏洞
运维·人工智能·安全·web安全·机器学习
兔兔爱学习兔兔爱学习7 小时前
创建Workforce
人工智能·算法
2301_794461578 小时前
力扣-有效三角形的个数
数据结构·算法·leetcode
Tiny番茄8 小时前
LeetCode 39. 组合总和 LeetCode 40.组合总和II LeetCode 131.分割回文串
算法·leetcode·职场和发展
zhangpz_8 小时前
【数据结构】树状数组
数据结构·算法·树状数组
悲伤小伞8 小时前
C++_数据结构_哈希表(hash)实现
数据结构·c++·笔记·算法·哈希算法·散列表
贺函不是涵8 小时前
【沉浸式求职学习day46】【华为5.7暑期机试题目讲解】
学习·算法·华为
June`8 小时前
FloodFill算法:洪水般的图像处理艺术
算法·深度优先