机器学习基础介绍

百度百科:
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能核心,是使计算机具有智能的根本途径。

基本概念

机器学习的基本思路:

  1. 把现实生活中的问题抽象成数学模型,并且很清楚模型中不同参数的作用
  2. 利用数学方法对这个数学模型进行求解,从而解决现实生活中的问题
  3. 评估这个数学模型,是否真正的解决了现实生活中的问题,解决的如何?

    定义:
    机器学习是计算机科学的一个分支,在这个领域中,机器能够学着执行那些没有被显式编程的任务;
    简而言之,机器观察某项任务中存在的模式,并试图以某种直接或间接的方式模仿它;
    通过训练集,不断识别特征 ,不断建模 ,最后形成有效的模型 ,这个过程就叫"机器学习";

分类

监督学习:对数据集进行转换;监督学习是指我们给算法一个数据集,并且给定正确答案。机器通过数据来学习正确答案的计算方法。比如准备一堆猫狗照片,打上标签,这些标签就是"正确答案",机器通过大量学习,就可以学会在新照片中认出猫和狗。

机器学习的大部分工作都是训练某种监督分类器。

非监督学习:对数据进行分组;非监督学习中,给定的数据集没有"正确答案",所有的数据都是一样的。无监督学习的任务是从给定的数据集中,挖掘出潜在的结构。比如准备一堆猫狗照片,不给任何标签,希望机器能够将这些照片分分类。非监督学习虽然把猫狗分成两类,但是机器并不知道哪个是猫,哪个是狗。对于机器来说,相当于分成了 A、B 两类;

机器学习实操步骤

● 收集数据

● 数据准备

● 选择一个模型

● 训练

● 评估

● 参数调整

● 预测(开始使用)

经典机器学习算法

人工智能、机器学习、深度学习的关系

深度学习基础介绍

待更新

参考

--《深度学习图解》[安德鲁.特拉斯克]

相关推荐
天水幼麟23 分钟前
动手学深度学习-学习笔记(总)
笔记·深度学习·学习
jndingxin3 小时前
OpenCV CUDA模块设备层-----高效地计算两个 uint 类型值的带权重平均值
人工智能·opencv·计算机视觉
天水幼麟3 小时前
动手学深度学习-学习笔记【二】(基础知识)
笔记·深度学习·学习
Sweet锦3 小时前
零基础保姆级本地化部署文心大模型4.5开源系列
人工智能·语言模型·文心一言
hie988944 小时前
MATLAB锂离子电池伪二维(P2D)模型实现
人工智能·算法·matlab
晨同学03274 小时前
opencv的颜色通道问题 & rgb & bgr
人工智能·opencv·计算机视觉
蓝婷儿4 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手4 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
小和尚同志4 小时前
Cline | Cline + Grok3 免费 AI 编程新体验
人工智能·aigc
我就是全世界4 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm