机器学习基础介绍

百度百科:
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。

它是人工智能核心,是使计算机具有智能的根本途径。

基本概念

机器学习的基本思路:

  1. 把现实生活中的问题抽象成数学模型,并且很清楚模型中不同参数的作用
  2. 利用数学方法对这个数学模型进行求解,从而解决现实生活中的问题
  3. 评估这个数学模型,是否真正的解决了现实生活中的问题,解决的如何?

    定义:
    机器学习是计算机科学的一个分支,在这个领域中,机器能够学着执行那些没有被显式编程的任务;
    简而言之,机器观察某项任务中存在的模式,并试图以某种直接或间接的方式模仿它;
    通过训练集,不断识别特征 ,不断建模 ,最后形成有效的模型 ,这个过程就叫"机器学习";

分类

监督学习:对数据集进行转换;监督学习是指我们给算法一个数据集,并且给定正确答案。机器通过数据来学习正确答案的计算方法。比如准备一堆猫狗照片,打上标签,这些标签就是"正确答案",机器通过大量学习,就可以学会在新照片中认出猫和狗。

机器学习的大部分工作都是训练某种监督分类器。

非监督学习:对数据进行分组;非监督学习中,给定的数据集没有"正确答案",所有的数据都是一样的。无监督学习的任务是从给定的数据集中,挖掘出潜在的结构。比如准备一堆猫狗照片,不给任何标签,希望机器能够将这些照片分分类。非监督学习虽然把猫狗分成两类,但是机器并不知道哪个是猫,哪个是狗。对于机器来说,相当于分成了 A、B 两类;

机器学习实操步骤

● 收集数据

● 数据准备

● 选择一个模型

● 训练

● 评估

● 参数调整

● 预测(开始使用)

经典机器学习算法

人工智能、机器学习、深度学习的关系

深度学习基础介绍

待更新

参考

--《深度学习图解》[安德鲁.特拉斯克]

相关推荐
SmartBrain8 分钟前
AI新书推荐:深度学习和大模型原理与实践(清华社)
人工智能·深度学习
是十一月末9 分钟前
opencv实现KNN算法识别图片数字
人工智能·python·opencv·算法·k-近邻算法
百家方案36 分钟前
「下载」智慧园区及重点区域安全防范解决方案:框架统一规划,建设集成管理平台
大数据·人工智能·安全·智慧园区·数智化园区
Ven%1 小时前
DeepSpeed的json配置讲解:ds_config_zero3.json
人工智能·python·ubuntu·json·aigc
z千鑫1 小时前
【AIGC】AI、大数据、机器学习、深度学习、神经网络之间的关系详解:你必须知道的5个关键点!
人工智能·深度学习·机器学习
金书世界1 小时前
自动驾驶AVM环视算法--python版本的车轮投影模式
人工智能·机器学习·自动驾驶
Kai HVZ1 小时前
《机器学习》——利用OpenCV库中的KNN算法进行图像识别
opencv·算法·机器学习
eqwaak02 小时前
爬虫自动化(DrissionPage)
开发语言·人工智能·爬虫·python·自动化·pip
itwangyang5202 小时前
AIDD - 基于多层图注意力神经网络的药物-靶点相互作用预测模型研究
人工智能·深度学习·机器学习
新加坡内哥谈技术2 小时前
谷歌用Anthropic的Claude帮Gemini“打磨”性能
人工智能