联邦蒸馏中的分布式知识一致性 | TIST 2024

联邦蒸馏中的分布式知识一致性 | TIST 2024

联邦学习是一种隐私保护的分布式机器学习范式,服务器可以在不汇集客户端私有数据的前提下联合训练机器学习模型。通信约束和系统异构是联邦学习面临的两大严峻挑战。为同时解决上述两个问题,联邦蒸馏技术被提出,它在服务器和客户端之间交换知识(模型输出),既支持异构客户端模型,又降低了通信开销。

本文探究了免代理数据集联邦蒸馏方法中的知识不一致性问题,即:由于客户端模型异构的特性,会导致本地知识置信度之间存在显著差异,服务器学习到的表征因此存在偏差,进而降低整个联邦学习系统的性能。

为解决知识不一致带来的准确率下降问题,本文从一个新角度出发:在异构客户端之间实现分布式的知识一致性。论文提出了一种基于分布式知识一致性的无代理数据联邦蒸馏算法FedDKC,它通过精心设计的知识精化策略,将本地知识差异缩小到可接受的上界,以减轻知识不一致的负面影响。具体来说,论文从峰值概率和香农熵两个角度设计了基于核和基于搜索的两种策略,理论上保证优化后的本地知识可满足近似的置信度分布,并被视为一致的。在服务器端蒸馏时基于一致的本地知识,全局模型可以稳定地朝正确的方向收敛,从而帮助客户端提升模型精度。

论文在多个公开数据集上开展了实验,结果表明,相比基准算法,FedDKC显著提高了模型异构的设置下准确率,并明显提升了收敛速度。




论文链接:https://arxiv.org/abs/2204.07028

相关推荐
wscats7 分钟前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星9 分钟前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器12 分钟前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游
EnoYao14 分钟前
Markdown 编辑器技术调研
前端·javascript·人工智能
TMT星球27 分钟前
曹操出行上市后首次战略并购,进军万亿to B商旅市场
人工智能·汽车
Coder_Boy_31 分钟前
Spring AI 源码大白话解析
java·人工智能·spring
Fuly10241 小时前
大模型剪枝(Pruning)技术简介
算法·机器学习·剪枝
启途AI1 小时前
【深度解析】ChatPPT联动Nano Banana Pro:不止生成风格自由,AI创作编辑全链路解锁
人工智能·powerpoint·ppt
数字化转型20251 小时前
SAP Signavio 在风机制造行业的深度应用研究
大数据·运维·人工智能
山海青风1 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 6 模型训练
人工智能·python·机器学习