联邦蒸馏中的分布式知识一致性 | TIST 2024

联邦蒸馏中的分布式知识一致性 | TIST 2024

联邦学习是一种隐私保护的分布式机器学习范式,服务器可以在不汇集客户端私有数据的前提下联合训练机器学习模型。通信约束和系统异构是联邦学习面临的两大严峻挑战。为同时解决上述两个问题,联邦蒸馏技术被提出,它在服务器和客户端之间交换知识(模型输出),既支持异构客户端模型,又降低了通信开销。

本文探究了免代理数据集联邦蒸馏方法中的知识不一致性问题,即:由于客户端模型异构的特性,会导致本地知识置信度之间存在显著差异,服务器学习到的表征因此存在偏差,进而降低整个联邦学习系统的性能。

为解决知识不一致带来的准确率下降问题,本文从一个新角度出发:在异构客户端之间实现分布式的知识一致性。论文提出了一种基于分布式知识一致性的无代理数据联邦蒸馏算法FedDKC,它通过精心设计的知识精化策略,将本地知识差异缩小到可接受的上界,以减轻知识不一致的负面影响。具体来说,论文从峰值概率和香农熵两个角度设计了基于核和基于搜索的两种策略,理论上保证优化后的本地知识可满足近似的置信度分布,并被视为一致的。在服务器端蒸馏时基于一致的本地知识,全局模型可以稳定地朝正确的方向收敛,从而帮助客户端提升模型精度。

论文在多个公开数据集上开展了实验,结果表明,相比基准算法,FedDKC显著提高了模型异构的设置下准确率,并明显提升了收敛速度。




论文链接:https://arxiv.org/abs/2204.07028

相关推荐
机智的小神仙儿7 分钟前
基于ResNet的CIFAR-10分类实现与分析
图像处理·人工智能·数据挖掘
PokiFighting10 分钟前
【大模型+本地自建知识图谱/GraphRAG/neo4j/ollama+Qwen千问(或llama3)】 python实战(中)
人工智能·大模型·知识图谱·neo4j
jiayoushijie-泽宣17 分钟前
VITA-1.5接近GPT4o水平的多模态模型:理解和跑通这套多模态实时交互系统
人工智能·算法·交互
PzZzang226 分钟前
filebeat、kafka
分布式·kafka
Lin_Miao_0928 分钟前
Kafka优势剖析-高效的数据复制
分布式·kafka
Lin_Miao_0933 分钟前
Kafka优势剖析-幂等性和事务
分布式·kafka
摸鱼仙人~36 分钟前
Deep Learning Meets Hyperspectral Image Analysis: A Multidisciplinary 参考文献翻译
人工智能·深度学习
思通数科多模态大模型37 分钟前
开源AI视频监控系统,助力公租房廉租房管理,打击倒卖行为
人工智能·深度学习·目标检测·机器学习·目标跟踪·自然语言处理·数据挖掘
weixin_3499105038 分钟前
机器学习在智能外呼机器人中的作用
人工智能·机器学习·机器人
爱研究的小牛43 分钟前
Synthesia技术浅析(六):生成对抗网络
人工智能·神经网络·生成对抗网络·aigc