有趣的数学 数学建模入门三 数学建模入门示例两例 利用微积分求解

一、入门示例1

1、问题描述

某宾馆有150间客房,经过一段时间的经营,该宾馆经理得到一些数据:如果每间客房定价为200元,入住率为55%;定价为180元,入住率为65%;定价为160元,入住率为75%;定价为140元,入住率为85%。

经理想要使每天的收入最高,问每间客房的定价应为多少?

2、模型假设

假设1:每间客房的最高定价为200元。

假设2:根据题目提供的数据,可设随着房价的下降,入住率呈线性增长。

假设3:宾馆的每间客房的定价相等。

3、模型建立

表示宾馆一天的总收入,与200元相比每间客房降低的房价为元。由假设2可得,每降低1元房价,入住率就增加

因此,150间客房,最高房价200,1元入住率为0.005,可以如下公式:

,可知。于是问题转化为求当时,总收入的最大值是多少?

4、模型求解

我们整理一下上面的方程。

然后利用一元函数微分,令

可得当,即房价定为155元时,可获得最高收入18018.75元。此时,相应的入住率为77.5%。

二、入门示例2

1、问题描述

人口统计学家已经发现:每个城市的市中心人口密度最大,离市中心越远人口越稀少、密度越小。最为常见的人口密度模型为(每平方千米人口数),其中为大于0的常数,是距市中心的距离。如何求某城市的总人口数?

根据相关数据:某城市市中心的人口密度为:

在距离市中心10km时的人口密度为:

该城市为半径30km的圆形区域。

2、问题分析

为了确定区间,设市中心位于坐标原点,于是,从而人口密度函数为

3、模型求解

先确定人口密度中的常数a,c。

,可得

因此人口密度函数为:

从而该城市的总人口数就是人口密度函数的积分,其中积分区域D为,即

相关推荐
瓦力的狗腿子1 天前
Starlink卫星动力学系统仿真建模番外篇6-地球敏感器
算法·数学建模·simulink
数模竞赛Paid answer2 天前
2024年国赛高教杯数学建模A题板凳龙闹元宵解题全过程文档及程序
数学建模·全国大学生数学建模竞赛·国赛高教杯
鸭鸭鸭进京赶烤2 天前
数学建模:解锁智能计算的密码!
人工智能·计算机网络·算法·数学建模·信息可视化·机器人·信息与通信
MPCTHU3 天前
数学建模之数学模型-1:线性规划
数学建模
金融OG3 天前
0.1 量海航行:量化因子列表汇总(持续更新)
人工智能·python·机器学习·数学建模·金融
瓦力的狗腿子4 天前
Starlink卫星动力学系统仿真建模番外篇5-太阳敏感器
算法·数学建模
数学建模BOOM6 天前
MATLAB更改图论的布局:设置layout
数学建模
青橘MATLAB学习6 天前
模糊综合评价法:原理、步骤与MATLAB实现
开发语言·算法·数学建模·matlab·分类
数模竞赛Paid answer6 天前
2021年全国研究生数学建模竞赛华为杯E题信号干扰下的超宽带(UWB)精确定位问题求解全过程文档及程序
数学建模·数据分析·研究生数学建模·华为杯数学建模
88号技师9 天前
2025年3月一区SCI-混沌进化优化算法Chaotic evolution optimization-附Matlab免费代码
开发语言·人工智能·算法·数学建模·matlab·优化算法