记录 | CUDA编程中用constexpr替代__host__&__device__

比如用 __host__ & __device__ 的情况如下:

#include <cstdio>
#include <cuda_runtime.h>

__host__ __device__ void say_hello(){
    printf("Hello, world!\n");
}

__global__ void kernel(){
    say_hello();
}

int main(){
    kernel<<<1, 1>>>();
    cudaDeviceSynchronize();
    say_hello();
    return 0;
}
}

则可以用 constexpr 来替代 __host__ __device,替代后的代码如下:

#include <cstdio>
#include <cuda_runtime.h>

constexpr const char* cuthead(const char* p){
    return p+1;
}

__global__ void kernel(){
    printf(cuthead("Gello, world!\n"));
}

int main(){
    kernel<<<1, 1>>>();
    cudaDeviceSynchronize();
    printf(cuthead("Cello, world!\n"));
    return 0;
}

● 这样相当于把 constexpr 函数自动变成修饰符 __host__ __device__ ,从而两边都可以调用;

● 因为 constexpr 通常都是一些可以内联的函数,数学计算表达式之类的,一个个加上太累了,所以产生了这个需求;

● 不过必须指定 --expt-relaxed-constexpr 这个选项才能用这个特性,咱们可以用 CMake 的生成器表达式来实现只对 .cu 文件开启此选项 (不然给到 gcc 就出错了);

# 这个.cu用nvcc编译就是这样的 
nvcc demo.cu --expt-relaxed-constexpr

● constexpr里面没办法调用 printf,也不能用 __syncthreads 之类的 GPU 特有的函数,因此也不能完全替代 __host____device__

相关推荐
DWQY12 天前
ubuntu22.04降级安装CUDA11.3
cuda
Little_Yuu15 天前
windows11(或centos7)安装nvidia显卡驱动、CUDA、cuDNN
cuda·cudnn
engchina25 天前
CUTLASS:高性能 CUDA 线性代数模板库详解
人工智能·线性代数·cuda·cutlass
黄白柴柴1 个月前
cudnn版本gpu架构
cuda·cudnn
IT修炼家1 个月前
auto-gptq安装以及不适配软硬件环境可能出现的问题及解决方式
大模型·cuda·auto-gptq
爱听歌的周童鞋1 个月前
Depth-Anything推理详解及部署实现(下)
tensorrt·cuda·deploy·mde·depth anything
因为风的缘故~1 个月前
Ubuntu22.04安装cuda12.1+cudnn8.9.2+TensorRT8.6.1+pytorch2.3.0+opencv_cuda4.9+onnxruntime-gpu1.18
pytorch·深度学习·tensorrt·cuda·anaconda·cudnn
ai-guoyang1 个月前
tensorflow gpu版安装(直接anaconda虚拟环境中配置cuda,无需主机安装cuda、cudnn)
深度学习·tensorflow·cuda·anaconda
self-motivation1 个月前
gpu硬件架构
硬件架构·gpu·nvidia·tensor·cuda
枫舞雪域1 个月前
Ubuntu22.04安装英伟达驱动
linux·笔记·cuda·isaacsim·iassclab