记录 | CUDA编程中用constexpr替代__host__&__device__

比如用 __host__ & __device__ 的情况如下:

复制代码
#include <cstdio>
#include <cuda_runtime.h>

__host__ __device__ void say_hello(){
    printf("Hello, world!\n");
}

__global__ void kernel(){
    say_hello();
}

int main(){
    kernel<<<1, 1>>>();
    cudaDeviceSynchronize();
    say_hello();
    return 0;
}
}

则可以用 constexpr 来替代 __host__ __device,替代后的代码如下:

复制代码
#include <cstdio>
#include <cuda_runtime.h>

constexpr const char* cuthead(const char* p){
    return p+1;
}

__global__ void kernel(){
    printf(cuthead("Gello, world!\n"));
}

int main(){
    kernel<<<1, 1>>>();
    cudaDeviceSynchronize();
    printf(cuthead("Cello, world!\n"));
    return 0;
}

● 这样相当于把 constexpr 函数自动变成修饰符 __host__ __device__ ,从而两边都可以调用;

● 因为 constexpr 通常都是一些可以内联的函数,数学计算表达式之类的,一个个加上太累了,所以产生了这个需求;

● 不过必须指定 --expt-relaxed-constexpr 这个选项才能用这个特性,咱们可以用 CMake 的生成器表达式来实现只对 .cu 文件开启此选项 (不然给到 gcc 就出错了);

复制代码
# 这个.cu用nvcc编译就是这样的 
nvcc demo.cu --expt-relaxed-constexpr

● constexpr里面没办法调用 printf,也不能用 __syncthreads 之类的 GPU 特有的函数,因此也不能完全替代 __host____device__

相关推荐
安全二次方security²18 小时前
CUDA C++编程指南(7.25)——C++语言扩展之DPX
c++·人工智能·nvidia·cuda·dpx·cuda c++编程指南
不教书的塞涅卡3 天前
SSH远程接入PyTorch-CUDA-v2.9镜像,随时随地训练大模型
pytorch·ssh·cuda
安全二次方security²5 天前
CUDA C++编程指南(7.19&20)——C++语言扩展之Warp投票函数和Warp匹配函数
c++·人工智能·nvidia·cuda·投票函数·匹配函数·vote
安全二次方security²6 天前
CUDA C++编程指南(7.15&16)——C++语言扩展之内存空间谓词和转化函数
c++·人工智能·nvidia·cuda·内存空间谓词函数·内存空间转化函数·address space
安全二次方security²6 天前
CUDA C++编程指南(7.5&6)——C++语言扩展之内存栅栏函数和同步函数
c++·人工智能·nvidia·cuda·内存栅栏函数·同步函数·syncthreads
安全二次方security²8 天前
CUDA C++编程指南(7.2)——C++语言扩展之变量内存空间指定符
c++·人工智能·nvidia·cuda·内存空间指定符·__shared__·__device__
安全二次方security²8 天前
CUDA C++编程指南(7.1)——C++语言扩展之函数执行空间指定符
c++·人工智能·nvidia·cuda·cuda编程·global·函数执行空间指定符
八位数花园9 天前
PyTorch-CUDA镜像支持Knowledge Graph Embedding吗?
pytorch·cuda·知识图谱嵌入
KIDGINBROOK10 天前
DeepSeek DeepEP学习(五)Hybrid-EP dispatch
cuda·deepseek·deepep
被制作时长两年半的个人练习生11 天前
【FlashAttention】 FA2与FA1算法区别辨析
attention·cuda