记录 | CUDA编程中用constexpr替代__host__&__device__

比如用 __host__ & __device__ 的情况如下:

复制代码
#include <cstdio>
#include <cuda_runtime.h>

__host__ __device__ void say_hello(){
    printf("Hello, world!\n");
}

__global__ void kernel(){
    say_hello();
}

int main(){
    kernel<<<1, 1>>>();
    cudaDeviceSynchronize();
    say_hello();
    return 0;
}
}

则可以用 constexpr 来替代 __host__ __device,替代后的代码如下:

复制代码
#include <cstdio>
#include <cuda_runtime.h>

constexpr const char* cuthead(const char* p){
    return p+1;
}

__global__ void kernel(){
    printf(cuthead("Gello, world!\n"));
}

int main(){
    kernel<<<1, 1>>>();
    cudaDeviceSynchronize();
    printf(cuthead("Cello, world!\n"));
    return 0;
}

● 这样相当于把 constexpr 函数自动变成修饰符 __host__ __device__ ,从而两边都可以调用;

● 因为 constexpr 通常都是一些可以内联的函数,数学计算表达式之类的,一个个加上太累了,所以产生了这个需求;

● 不过必须指定 --expt-relaxed-constexpr 这个选项才能用这个特性,咱们可以用 CMake 的生成器表达式来实现只对 .cu 文件开启此选项 (不然给到 gcc 就出错了);

复制代码
# 这个.cu用nvcc编译就是这样的 
nvcc demo.cu --expt-relaxed-constexpr

● constexpr里面没办法调用 printf,也不能用 __syncthreads 之类的 GPU 特有的函数,因此也不能完全替代 __host____device__

相关推荐
喜乐boy3 天前
CV系列——Conda + PyTorch + CUDA + cuDNN + Python 环境无脑安装速查笔记[2025.12]
pytorch·python·conda·cuda·cv
veritascxy5 天前
PyTorch-CUDA镜像支持自动驾驶感知模块训练
pytorch·自动驾驶·cuda
云雾J视界5 天前
多Stream并发实战:用流水线技术将AIGC服务P99延迟压降63%
aigc·api·cpu·stream·gpu·cuda·多并发
碧海潮生_CC7 天前
【CUDA笔记】05 使用 AMGX 实现泊松图像编辑
笔记·cuda
Stara05117 天前
基于WSL 2在Windows 11 构建深度学习开发环境 —— 以Ubuntu、Anaconda、PyCharm及GPU支持为核心
pytorch·ubuntu·windows 11·cuda·anaconda·wsl 2·pyrhon
碧海潮生_CC11 天前
【CUDA笔记】04 CUDA 归约, 原子操作,Warp 交换
笔记·cuda
fpcc15 天前
并行编程实战——CUDA编程的流的优先级
c++·cuda
碧海潮生_CC16 天前
【CUDA笔记】03 CUDA GPU 架构与一般的程序优化思路(下)
笔记·架构·cuda
中医正骨葛大夫17 天前
一文解决如何在Pycharm中创建cuda深度学习环境?
pytorch·深度学习·pycharm·软件安装·cuda·anaconda·配置环境
lvxiangyu1122 天前
wsl2 ubuntu24 opengl 无法使用nvidia显卡 解决方法记录
wsl·cuda·opengl