GAN:WGAN-DIV

论文:https://arxiv.org/pdf/1712.01026.pdf

代码:

发表:2018

摘要

在计算机视觉的许多领域中,生成对抗性网络已经取得了巨大的成功,其中WGANs系列被认为是最先进的,主要是由于其理论贡献和竞争的定性表现。然而,通过 Wasserstein-1 度量(W-met)来近似 k-Lipschitz约束是非常具有挑战性的。作者提出了一种新的 Wasserstein 散度(W-div),它是W-met的松弛版本,不需要k-Lipschitz约束。

公式

是随机噪声

是真数据

是真数据与假数据的线性混合

是两个超参数

再对比一下wgan-gp与wgan-div的目标函数的差异

在 WGAN-gp 中,为了满足 1-Lipschitz 约束,训练出好效果,采用了真假数据的插值方法,来模拟全空间的均匀分布 。 WGAN-div 的作者说,这种做法是一种机械性的,很难靠有限的采样,模拟出这种全空间分布。

with a finite number of training iterations on limited input samples, it is very difficult to guarantee the k-Lipschitz constraint for the whole input domain.

算法****流程

超参选择-k,p

作者固定p = 6,测试不同的k,结果为右下角:发现变化不大。FID基本在16附近。

作者固定k = 2,测试不同的p,结果为左下角:发现p=6时取得最优FID数值。

同时左上角也可以看出wgan-div的收敛速度最快

稳定性实验

4种设置: ResNet, ResNet without BN, ConvNet, ConvNet without BN

实验结果:ResNet 要好于 ConvNet, 有BN 要好于无BN

参考:

1:Wasserstein Divergence for GANs (WGAN-div) 计算W散度 | 莫烦Python

2:WGAN-div:默默无闻的WGAN填坑者(附开源代码) - 知乎

相关推荐
飞哥数智坊8 分钟前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪18 分钟前
AI建站推荐
大数据·人工智能·python
AI猫站长25 分钟前
快讯|特斯拉机器人街头“打工”卖爆米花;灵心巧手香港AI艺术节秀“艺能”,香港艺发局主席霍启刚积极评价;国产核心部件价格将“腰斩”
人工智能·机器人·具身智能·neurips·灵心巧手·脑电波·linkerhand
Godspeed Zhao41 分钟前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
昨日之日20061 小时前
SCAIL - 自然流畅的AI角色动画生成软件 照片跳舞 虚拟偶像 WebUI+ComfyUI工作流 一键整合包下载
人工智能·音视频
geneculture1 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位
我很哇塞耶1 小时前
OpenAI最新发布,企业级AI智能体的强化微调实践
人工智能·ai·大模型
岁月的眸1 小时前
【科大讯飞声纹识别和语音内容识别的实时接口实现】
人工智能·go·语音识别
Nautiluss1 小时前
一起玩XVF3800麦克风阵列(十)
linux·人工智能·python·音频·语音识别·实时音视频·dsp开发