GAN:WGAN-DIV

论文:https://arxiv.org/pdf/1712.01026.pdf

代码:

发表:2018

摘要

在计算机视觉的许多领域中,生成对抗性网络已经取得了巨大的成功,其中WGANs系列被认为是最先进的,主要是由于其理论贡献和竞争的定性表现。然而,通过 Wasserstein-1 度量(W-met)来近似 k-Lipschitz约束是非常具有挑战性的。作者提出了一种新的 Wasserstein 散度(W-div),它是W-met的松弛版本,不需要k-Lipschitz约束。

公式

是随机噪声

是真数据

是真数据与假数据的线性混合

是两个超参数

再对比一下wgan-gp与wgan-div的目标函数的差异

在 WGAN-gp 中,为了满足 1-Lipschitz 约束,训练出好效果,采用了真假数据的插值方法,来模拟全空间的均匀分布 。 WGAN-div 的作者说,这种做法是一种机械性的,很难靠有限的采样,模拟出这种全空间分布。

with a finite number of training iterations on limited input samples, it is very difficult to guarantee the k-Lipschitz constraint for the whole input domain.

算法****流程

超参选择-k,p

作者固定p = 6,测试不同的k,结果为右下角:发现变化不大。FID基本在16附近。

作者固定k = 2,测试不同的p,结果为左下角:发现p=6时取得最优FID数值。

同时左上角也可以看出wgan-div的收敛速度最快

稳定性实验

4种设置: ResNet, ResNet without BN, ConvNet, ConvNet without BN

实验结果:ResNet 要好于 ConvNet, 有BN 要好于无BN

参考:

1:Wasserstein Divergence for GANs (WGAN-div) 计算W散度 | 莫烦Python

2:WGAN-div:默默无闻的WGAN填坑者(附开源代码) - 知乎

相关推荐
新智元22 分钟前
阿里王牌 Agent 横扫 SOTA,全栈开源力压 OpenAI!博士级难题一键搞定
人工智能·openai
新智元26 分钟前
刚刚,OpenAI/Gemini 共斩 ICPC 2025 金牌!OpenAI 满分碾压横扫全场
人工智能·openai
机器之心1 小时前
OneSearch,揭开快手电商搜索「一步到位」的秘技
人工智能·openai
阿里云大数据AI技术1 小时前
2025云栖大会·大数据AI参会攻略请查收!
大数据·人工智能
YourKing1 小时前
yolov11n.onnx格式模型转换与图像推理
人工智能
sans_1 小时前
NCCL的用户缓冲区注册
人工智能
sans_1 小时前
三种视角下的Symmetric Memory,下一代HPC内存模型
人工智能
算家计算2 小时前
模糊高清修复真王炸!ComfyUI-SeedVR2-Kontext(画质修复+P图)本地部署教程
人工智能·开源·aigc
虫无涯2 小时前
LangSmith:大模型应用开发的得力助手
人工智能·langchain·llm
算家计算2 小时前
DeepSeek-R1论文登《自然》封面!首次披露更多训练细节
人工智能·资讯·deepseek