GAN:WGAN-DIV

论文:https://arxiv.org/pdf/1712.01026.pdf

代码:

发表:2018

摘要

在计算机视觉的许多领域中,生成对抗性网络已经取得了巨大的成功,其中WGANs系列被认为是最先进的,主要是由于其理论贡献和竞争的定性表现。然而,通过 Wasserstein-1 度量(W-met)来近似 k-Lipschitz约束是非常具有挑战性的。作者提出了一种新的 Wasserstein 散度(W-div),它是W-met的松弛版本,不需要k-Lipschitz约束。

公式

是随机噪声

是真数据

是真数据与假数据的线性混合

是两个超参数

再对比一下wgan-gp与wgan-div的目标函数的差异

在 WGAN-gp 中,为了满足 1-Lipschitz 约束,训练出好效果,采用了真假数据的插值方法,来模拟全空间的均匀分布 。 WGAN-div 的作者说,这种做法是一种机械性的,很难靠有限的采样,模拟出这种全空间分布。

with a finite number of training iterations on limited input samples, it is very difficult to guarantee the k-Lipschitz constraint for the whole input domain.

算法****流程

超参选择-k,p

作者固定p = 6,测试不同的k,结果为右下角:发现变化不大。FID基本在16附近。

作者固定k = 2,测试不同的p,结果为左下角:发现p=6时取得最优FID数值。

同时左上角也可以看出wgan-div的收敛速度最快

稳定性实验

4种设置: ResNet, ResNet without BN, ConvNet, ConvNet without BN

实验结果:ResNet 要好于 ConvNet, 有BN 要好于无BN

参考:

1:Wasserstein Divergence for GANs (WGAN-div) 计算W散度 | 莫烦Python

2:WGAN-div:默默无闻的WGAN填坑者(附开源代码) - 知乎

相关推荐
王中阳Go1 分钟前
攻克制造业知识检索难题:我们如何用Go+AI打造高可用RAG系统,将查询效率提升600%
人工智能·后端·go
有痣青年2 分钟前
Gemini 3 Flash 技术深度解析:多模态、推理引擎与开发者新特性
人工智能·ai编程·gemini
CodeLinghu3 分钟前
路由:Agent能够根据条件动态决定工作流的下一步
人工智能·microsoft·ai·llm
Felaim7 分钟前
【自动驾驶基础】LDM(Latent Diffusion Model) 要点总结
人工智能·机器学习·自动驾驶
科技快报9 分钟前
昇思人工智能框架峰会 | 昇思MindSpore MoE模型性能优化方案,提升训练性能15%+
人工智能·性能优化
式5169 分钟前
量子力学基础(二)狄拉克符号与复数向量空间
人工智能·算法·机器学习
视觉&物联智能13 分钟前
【杂谈】-人工智能:助力护士回归人文关怀,而非取而代之
人工智能·深度学习·ai·aigc·agi
Gavin在路上14 分钟前
AI学习之稀疏 MoE+Transformer架构
人工智能·学习·transformer
chenmingwei00014 分钟前
RT-1: ROBOTICS TRANSFORMERFOR REAL-WORLD CONTROL AT SCALE
人工智能
Carl_奕然28 分钟前
人工智能的幻觉问题:机理、挑战与缓解策略
人工智能·语言模型