GAN:WGAN-DIV

论文:https://arxiv.org/pdf/1712.01026.pdf

代码:

发表:2018

摘要

在计算机视觉的许多领域中,生成对抗性网络已经取得了巨大的成功,其中WGANs系列被认为是最先进的,主要是由于其理论贡献和竞争的定性表现。然而,通过 Wasserstein-1 度量(W-met)来近似 k-Lipschitz约束是非常具有挑战性的。作者提出了一种新的 Wasserstein 散度(W-div),它是W-met的松弛版本,不需要k-Lipschitz约束。

公式

是随机噪声

是真数据

是真数据与假数据的线性混合

是两个超参数

再对比一下wgan-gp与wgan-div的目标函数的差异

在 WGAN-gp 中,为了满足 1-Lipschitz 约束,训练出好效果,采用了真假数据的插值方法,来模拟全空间的均匀分布 。 WGAN-div 的作者说,这种做法是一种机械性的,很难靠有限的采样,模拟出这种全空间分布。

with a finite number of training iterations on limited input samples, it is very difficult to guarantee the k-Lipschitz constraint for the whole input domain.

算法****流程

超参选择-k,p

作者固定p = 6,测试不同的k,结果为右下角:发现变化不大。FID基本在16附近。

作者固定k = 2,测试不同的p,结果为左下角:发现p=6时取得最优FID数值。

同时左上角也可以看出wgan-div的收敛速度最快

稳定性实验

4种设置: ResNet, ResNet without BN, ConvNet, ConvNet without BN

实验结果:ResNet 要好于 ConvNet, 有BN 要好于无BN

参考:

1:Wasserstein Divergence for GANs (WGAN-div) 计算W散度 | 莫烦Python

2:WGAN-div:默默无闻的WGAN填坑者(附开源代码) - 知乎

相关推荐
mosquito_lover124 分钟前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
契合qht53_shine25 分钟前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉
Naomi5211 小时前
Trustworthy Machine Learning
人工智能·机器学习
刘 怼怼1 小时前
使用 Vue 重构 RAGFlow 实现聊天功能
前端·vue.js·人工智能·重构
程序员安仔1 小时前
每天学新 AI 工具好累?我终于发现了“一键全能且免费不限量”的国产终极解决方案
人工智能
闭月之泪舞1 小时前
OpenCv(五)——边缘检测
人工智能·计算机视觉
星霜旅人1 小时前
K-均值聚类
人工智能·机器学习
lilye662 小时前
程序化广告行业(39/89):广告投放的数据分析与优化秘籍
大数据·人工智能·数据分析
欧雷殿2 小时前
再谈愚蠢的「八股文」面试
前端·人工智能·面试
修复bug2 小时前
trae.ai 编辑器:前端开发者的智能效率革命
人工智能·编辑器·aigc