GAN:WGAN-DIV

论文:https://arxiv.org/pdf/1712.01026.pdf

代码:

发表:2018

摘要

在计算机视觉的许多领域中,生成对抗性网络已经取得了巨大的成功,其中WGANs系列被认为是最先进的,主要是由于其理论贡献和竞争的定性表现。然而,通过 Wasserstein-1 度量(W-met)来近似 k-Lipschitz约束是非常具有挑战性的。作者提出了一种新的 Wasserstein 散度(W-div),它是W-met的松弛版本,不需要k-Lipschitz约束。

公式

是随机噪声

是真数据

是真数据与假数据的线性混合

是两个超参数

再对比一下wgan-gp与wgan-div的目标函数的差异

在 WGAN-gp 中,为了满足 1-Lipschitz 约束,训练出好效果,采用了真假数据的插值方法,来模拟全空间的均匀分布 。 WGAN-div 的作者说,这种做法是一种机械性的,很难靠有限的采样,模拟出这种全空间分布。

with a finite number of training iterations on limited input samples, it is very difficult to guarantee the k-Lipschitz constraint for the whole input domain.

算法****流程

超参选择-k,p

作者固定p = 6,测试不同的k,结果为右下角:发现变化不大。FID基本在16附近。

作者固定k = 2,测试不同的p,结果为左下角:发现p=6时取得最优FID数值。

同时左上角也可以看出wgan-div的收敛速度最快

稳定性实验

4种设置: ResNet, ResNet without BN, ConvNet, ConvNet without BN

实验结果:ResNet 要好于 ConvNet, 有BN 要好于无BN

参考:

1:Wasserstein Divergence for GANs (WGAN-div) 计算W散度 | 莫烦Python

2:WGAN-div:默默无闻的WGAN填坑者(附开源代码) - 知乎

相关推荐
nju_spy8 分钟前
复杂结构数据挖掘(二)关联规则挖掘 Association rule mining
人工智能·数据挖掘·关联规则挖掘·apiriori·dhp·fp-growth·高频集
刀客Doc12 分钟前
刀客doc:亚马逊广告再下一城,拿下微软DSP广告业务
大数据·人工智能·microsoft
掘金安东尼44 分钟前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN66681 小时前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费1 小时前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack1 小时前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒1 小时前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
MicroTech20251 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆1 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊2 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构