LlamaIndex 四 数据连接器

欢迎来到我的LlamaIndex系列,如果您也和我一样,在搭建RAG应用时,了解到了LlamaIndex, 那就请一起来学习它的各个功能模块和demo实例。 LlamaIndex 一 简单文档查询 - 掘金 (juejin.cn)

LlamIndex二 RAG应用开发 - 掘金 (juejin.cn)

LlamaIndex三 配置 - 掘金 (juejin.cn)

前言

我们通过各项配置,理解了LlamaIndex在构建知识库和基于知识库的推荐两个阶段,怎么和业务相结合。本文,我们将开始深入理解LlamaIndex的各个模块。首先,LlamaIndex强大的Data Connector 数据连接器上场。

LlamaIndex擅长和各种类型或格式的数据打交道,并通过DocumentNodes的概念,embedding索引后,交给大模型处理,高精度完成AI知识库或AI助理应用开发。利用私有知识库,增强LLM的检索能力, 即RAG

现在, 让我们来仔细研究Data Connectors数据连接器模块的细节。

Data Connectors

开始深入之前,我们先来回顾下LlamaIndex构建知识库(Knowledge Base)阶段的架构图。 最左侧的Data Sources部分展示了RAG应用中,各种数据来源。RAG应用多是聊天机器人或搜索的产品形式,入口简单,这就需要LlamaIndex具备整合或自然语言处理各种格式,或各种渠道数据的能力。图中列出了Databases 数据库,Documents 文档,APIs 应用接口。假如是大型企业或组织,这是要整多少数据库,横跨多长时间的文档,散落在多少业务中的API?

LangChain作为LLm开发框架,将RAG这块交给LlamaIndex, 正因为它的专业。当我们开始着手RAG应用时,数据加载是非常重要的一个环节,且LlamaIndex给我们安排了那些科技和狠活...

数据连接器接口

为支持不同数据源和格式的数据加载,LlamaIndex准备了一堆数据接口类,让人好生欢迎

  • Simple Directory Reader
  • Psychic Reader
  • DeepLake Reader
  • Qdrant Reade
  • Discord Reader
  • MongoDB Reader
  • Chroma Reader
  • MyScale Reader
  • Faiss Reader
  • Obsidian Reader
  • Slack Reader
  • Web Page Reader
  • Pinecone Reader
  • Mbox Reader
  • MilvusReader
  • Notion Reader
  • Github Repo Reader
  • Google Docs Reader
  • Database Reader
  • Twitter Reader
  • Weaviate Reader

连接demos

  • 连接网页数据
ini 复制代码
from llama_index import download_loader #老版本可以直接import SimpleWebPageReader 现在得这么搞

SimpleWebPageReader = download_loader("SimpleWebPageReader")

loader = SimpleWebPageReader()
documents = loader.load_data(urls=['http://paulgraham.com/worked.html'])

各位,请留意。最新版本的LlamaIndex 基于llamahub来托管,大家可以到Llama Hub来看最新文档。代码中download_loader的意思就是先从llamahub中加载SimpleWebPageReade连接器。

从打印结果我们可以看到,SimpleWebPageReader接口将网页数据以Document的格式保存。

  • 连接Markdown格式文件
ini 复制代码
from pathlib import Path
from llama_index import download_loader

MarkdownReader = download_loader("MarkdownReader")

loader = MarkdownReader()
documents = loader.load_data(file=Path('./README.md'))

使用了MarkdownReader读取了当前目录下的README.md文件

  • pdf 格式文件
ini 复制代码
from pathlib import Path 
from llama_index import download_loader 
PDFReader = download_loader("PDFReader") 
loader = PDFReader() 
documents = loader.load_data(file=Path('./article.pdf'))
  • api
ini 复制代码
import requests
from llama_index import VectorStoreIndex, download_loader
headers = {
}
data = requests.get("https://api.github.com/users/shunwuyu/repos", headers=headers).json()

JsonDataReader = download_loader("JsonDataReader")
loader = JsonDataReader()
documents = loader.load_data(data)
index = VectorStoreIndex.from_documents(documents)
index.query("how many repos are there?")

基于github的api获取了json数据并提问。

综合案例

现在就让我们基于Data Connectors的理解,去开发一个针对langchain文档的知识库RAG应用

  • 安装LlamaIndex
css 复制代码
!pip install -q -U llama-index
  • 设置OPANAI_API_KEY
lua 复制代码
import os 
os.environ['OPENAI_API_KEY'] = 'your valid openai api key'
  • 下载langchain文件并使用数据接口加载
bash 复制代码
!git clone https://github.com/sugarforever/wtf-langchain.git

wft-langchain这个repo,是langchain的开源教程库,里面的文档都是RAG应用的语料来源

ini 复制代码
from llama_index import SimpleDirectoryReader 
reader = SimpleDirectoryReader( input_dir="./wtf-langchain", required_exts=[".md"], recursive=True ) 
docs = reader.load_data() #加载数据到文档数组

我们使用SimpleDirectoryReader, 读取了刚刚克隆下来的wtf-langchain目录下的所有markdown格式的文件。

  • 对文档构建索引,生成知识库, 并初始化查询引擎
ini 复制代码
from llama_index import VectorStoreIndex 
index = VectorStoreIndex.from_documents(docs) 
query_engine = index.as_query_engine() 
response = query_engine.query("什么是WTF LangChain?") 
print(response)

从上图看,我们拿到了准确的答案。

总结

  • 在开发RAG应用时,数据加载是非常重要的一个环节。 Data Connectors 是LlamaIndex的第一个核心模块。
  • 操练一些数据接口,开始干活。

参考资料

相关推荐
墨风如雪1 分钟前
Gemini 2.5 Pro:AI新王登基,炸裂来袭!
aigc
袁庭新13 分钟前
使用扣子+飞书+DeepSeek搭建批量提取公众号文章内容并改写的智能体
人工智能·aigc·coze
黑心萝卜三条杠27 分钟前
解码微生物适应性的关键:基因组序列与栖息地预测的深度关联
人工智能
黑心萝卜三条杠1 小时前
Everywhere Attack:通过多目标植入提升对抗样本的目标迁移性
人工智能
小溪彼岸1 小时前
【Cursor实战】Context7 MCP为Cursor提供实时文档上下文
aigc·cursor
carpell1 小时前
【语义分割专栏】3:Segnet原理篇
人工智能·python·深度学习·计算机视觉·语义分割
ahead~1 小时前
【大模型原理与技术-毛玉仁】第五章 模型编辑
人工智能·深度学习·机器学习
迪娜学姐1 小时前
GenSpark vs Manus实测对比:文献综述与学术PPT,哪家强?
论文阅读·人工智能·prompt·powerpoint·论文笔记
TDengine (老段)2 小时前
TDengine 在电力行业如何使用 AI ?
大数据·数据库·人工智能·时序数据库·tdengine·涛思数据
猎板PCB厚铜专家大族2 小时前
高频 PCB 技术发展趋势与应用解析
人工智能·算法·设计规范