OpenCV | 特征匹配

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

box.png

box_in_scene.png

python 复制代码
img1 = cv2.imread('box.png',0)
img2 = cv2.imread('box_in_scene.png',0)
python 复制代码
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
python 复制代码
cv_show('img1',img1)
python 复制代码
cv_show('img2',img2)
python 复制代码
sift = cv2.xfeatures2d.SIFT_create()
python 复制代码
kp1,des1 = sift.detectAndCompute(img1,None)
kp2,des2 = sift.detectAndCompute(img2,None)
python 复制代码
# crossCheck 表示两个特征点要互相匹配,例如A中的第i个特征点与B中的第j个特征点最近的,并且B中的第j个特征点到A中的第i个特征点也是
# NORM_L2 :归一化数组的(欧几里德距离),如果其他特征计算方法需要考虑不同的匹配计算方式
bf = cv2.BFMatcher(crossCheck=True)

1对1的匹配

python 复制代码
matches = bf.match(des1,des2)
matches = sorted(matches, key=lambda x: x.distance)
python 复制代码
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

k对最佳匹配

python 复制代码
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2,k=2)
python 复制代码
good = []
for m,n in matches:
    if m.distance < 0.75*n.distance:
        good.append([m])
python 复制代码
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

ps:这里有一两个匹配点是错误的,还需要进一步的优化。

相关推荐
J_Xiong011717 分钟前
【LLMs篇】14:扩散语言模型的理论优势与局限性
人工智能·语言模型·自然语言处理
红衣小蛇妖1 小时前
神经网络-Day44
人工智能·深度学习·神经网络
忠于明白1 小时前
Spring AI 核心工作流
人工智能·spring·大模型应用开发·spring ai·ai 应用商业化
且慢.5892 小时前
Python_day47
python·深度学习·计算机视觉
大写-凌祁2 小时前
论文阅读:HySCDG生成式数据处理流程
论文阅读·人工智能·笔记·python·机器学习
Unpredictable2222 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
柯南二号2 小时前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
珂朵莉MM2 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
IT_陈寒2 小时前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端