OpenCV | 特征匹配

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

box.png

box_in_scene.png

python 复制代码
img1 = cv2.imread('box.png',0)
img2 = cv2.imread('box_in_scene.png',0)
python 复制代码
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
python 复制代码
cv_show('img1',img1)
python 复制代码
cv_show('img2',img2)
python 复制代码
sift = cv2.xfeatures2d.SIFT_create()
python 复制代码
kp1,des1 = sift.detectAndCompute(img1,None)
kp2,des2 = sift.detectAndCompute(img2,None)
python 复制代码
# crossCheck 表示两个特征点要互相匹配,例如A中的第i个特征点与B中的第j个特征点最近的,并且B中的第j个特征点到A中的第i个特征点也是
# NORM_L2 :归一化数组的(欧几里德距离),如果其他特征计算方法需要考虑不同的匹配计算方式
bf = cv2.BFMatcher(crossCheck=True)

1对1的匹配

python 复制代码
matches = bf.match(des1,des2)
matches = sorted(matches, key=lambda x: x.distance)
python 复制代码
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

k对最佳匹配

python 复制代码
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2,k=2)
python 复制代码
good = []
for m,n in matches:
    if m.distance < 0.75*n.distance:
        good.append([m])
python 复制代码
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

ps:这里有一两个匹配点是错误的,还需要进一步的优化。

相关推荐
说私域1 分钟前
基于开源AI大模型AI智能名片S2B2C商城小程序源码的私域流量新生态构建
人工智能·开源
HollowKnightZ7 分钟前
目标姿态估计综述:Deep Learning-Based Object Pose Estimation: A Comprehensive Survey
人工智能·深度学习
加油吧zkf40 分钟前
Conda虚拟环境管理:从入门到精通的常用命令
图像处理·深度学习·计算机视觉·conda
算家计算1 小时前
“28项评测23项SOTA——GLM-4.1V-9B-Thinking本地部署教程:10B级视觉语言模型的性能天花板!
人工智能·开源
Codebee1 小时前
OneCode注解驱动:智能送货单系统的AI原生实现
人工智能·低代码
2401_878624791 小时前
pytorch 自动微分
人工智能·pytorch·python·机器学习
胖达不服输1 小时前
「日拱一码」021 机器学习——特征工程
人工智能·python·机器学习·特征工程
Rvelamen1 小时前
大模型安全风险与防护产品综述 —— 以 Otter LLM Guard 为例
人工智能
MARS_AI_2 小时前
大语言模型驱动智能语音应答:技术演进与架构革新
人工智能·语言模型·自然语言处理·架构·信息与通信