OpenCV | 特征匹配

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

box.png

box_in_scene.png

python 复制代码
img1 = cv2.imread('box.png',0)
img2 = cv2.imread('box_in_scene.png',0)
python 复制代码
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
python 复制代码
cv_show('img1',img1)
python 复制代码
cv_show('img2',img2)
python 复制代码
sift = cv2.xfeatures2d.SIFT_create()
python 复制代码
kp1,des1 = sift.detectAndCompute(img1,None)
kp2,des2 = sift.detectAndCompute(img2,None)
python 复制代码
# crossCheck 表示两个特征点要互相匹配,例如A中的第i个特征点与B中的第j个特征点最近的,并且B中的第j个特征点到A中的第i个特征点也是
# NORM_L2 :归一化数组的(欧几里德距离),如果其他特征计算方法需要考虑不同的匹配计算方式
bf = cv2.BFMatcher(crossCheck=True)

1对1的匹配

python 复制代码
matches = bf.match(des1,des2)
matches = sorted(matches, key=lambda x: x.distance)
python 复制代码
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

k对最佳匹配

python 复制代码
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2,k=2)
python 复制代码
good = []
for m,n in matches:
    if m.distance < 0.75*n.distance:
        good.append([m])
python 复制代码
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

ps:这里有一两个匹配点是错误的,还需要进一步的优化。

相关推荐
视觉语言导航26 分钟前
湖南大学3D场景问答最新综述!3D-SQA:3D场景问答助力具身智能场景理解
人工智能·深度学习·具身智能
AidLux26 分钟前
端侧智能重构智能监控新路径 | 2025 高通边缘智能创新应用大赛第三场公开课来袭!
大数据·人工智能
引量AI34 分钟前
TikTok矩阵运营干货:从0到1打造爆款矩阵
人工智能·矩阵·自动化·tiktok矩阵·海外社媒
Hi-Dison1 小时前
神经网络极简入门技术分享
人工智能·深度学习·神经网络
奋斗者1号1 小时前
机器学习之决策树模型:从基础概念到条件类型详解
人工智能·决策树·机器学习
LinkTime_Cloud1 小时前
谷歌引入 AI 反诈系统:利用语言模型分析潜在恶意网站
人工智能·语言模型·自然语言处理
张小九991 小时前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
Panesle1 小时前
分布式异步强化学习框架训练32B大模型:INTELLECT-2
人工智能·分布式·深度学习·算法·大模型
zstar-_1 小时前
FreeTex v0.2.0:功能升级/支持Mac
人工智能·python·macos·llm
于壮士hoho2 小时前
DeepSeek | AI需求分析
人工智能·python·ai·需求分析·dash