OpenCV | 特征匹配

python 复制代码
import cv2
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

box.png

box_in_scene.png

python 复制代码
img1 = cv2.imread('box.png',0)
img2 = cv2.imread('box_in_scene.png',0)
python 复制代码
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
python 复制代码
cv_show('img1',img1)
python 复制代码
cv_show('img2',img2)
python 复制代码
sift = cv2.xfeatures2d.SIFT_create()
python 复制代码
kp1,des1 = sift.detectAndCompute(img1,None)
kp2,des2 = sift.detectAndCompute(img2,None)
python 复制代码
# crossCheck 表示两个特征点要互相匹配,例如A中的第i个特征点与B中的第j个特征点最近的,并且B中的第j个特征点到A中的第i个特征点也是
# NORM_L2 :归一化数组的(欧几里德距离),如果其他特征计算方法需要考虑不同的匹配计算方式
bf = cv2.BFMatcher(crossCheck=True)

1对1的匹配

python 复制代码
matches = bf.match(des1,des2)
matches = sorted(matches, key=lambda x: x.distance)
python 复制代码
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

k对最佳匹配

python 复制代码
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1,des2,k=2)
python 复制代码
good = []
for m,n in matches:
    if m.distance < 0.75*n.distance:
        good.append([m])
python 复制代码
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
python 复制代码
cv_show('img3',img3)

输出结果:

ps:这里有一两个匹配点是错误的,还需要进一步的优化。

相关推荐
Learn Beyond Limits4 分钟前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
AI360labs_atyun6 分钟前
2025世界智博会,揭幕AI触手可及的科幻生活
人工智能·ai·音视频·生活
luoganttcc10 分钟前
小鹏汽车 vla 算法最新进展和模型结构细节
人工智能·算法·汽车
算家计算13 分钟前
面壁智能开源多模态大模型——MiniCPM-V 4.5本地部署教程:8B参数开启多模态“高刷”时代!
人工智能·开源
居然JuRan13 分钟前
从零开始学大模型之大语言模型
人工智能
扑克中的黑桃A15 分钟前
AI 对话高效输入指令攻略(一):了解AI对话指令
人工智能
算家计算27 分钟前
不止高刷!苹果发布会AI功能全面解析:实时翻译、健康监测重磅升级
人工智能·apple·资讯
m0_6770343540 分钟前
机器学习-异常检测
人工智能·深度学习·机器学习
张子夜 iiii1 小时前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
胡耀超1 小时前
3.Python高级数据结构与文本处理
服务器·数据结构·人工智能·windows·python·大模型