Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。
在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:
java
DataStream<String> stream = env.addSource(...);
方法传入的参数是一个"源函数"(source function),需要实现SourceFunction接口。
从Flink1.12开始,主要使用流批统一的新Source架构:
java
DataStreamSource<String> stream = env.fromSource(...)
Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。
从集合中读取数据
最简单的读取数据的方式,就是在代码中直接创建一个Java集合,然后调用执行环境的fromCollection方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。
java
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
List<Integer> data = Arrays.asList(1, 22, 3);
DataStreamSource<Integer> ds = env.fromCollection(data);
stream.print();
env.execute();
}
从文件读取数据
真正的实际应用中,自然不会直接将数据写在代码中。通常情况下,我们会从存储介质中获取数据,一个比较常见的方式就是读取日志文件。这也是批处理中最常见的读取方式。
java
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
FileSource<String> fileSource = FileSource.forRecordStreamFormat(new TextLineInputFormat(), new Path("input/word.txt")).build();
env.fromSource(fileSource,WatermarkStrategy.noWatermarks(),"file")
.print();
env.execute();
}
说明:
-
参数可以是目录,也可以是文件;还可以从HDFS目录下读取,使用路径hdfs://...;
-
路径可以是相对路径,也可以是绝对路径;
-
相对路径是从系统属性user.dir获取路径:idea下是project的根目录,standalone模式下是集群节点根目录;
从socket读取数据
不论从集合还是文件,我们读取的其实都是有界数据。在流处理的场景中,数据往往是无界的。
我们之前用到的读取socket文本流,就是流处理场景。但是这种方式由于吞吐量小、稳定性较差,一般也是用于测试。
java
DataStream<String> stream = env.socketTextStream("localhost", 7777);
从数据生成器读取数据
Flink从1.11开始提供了一个内置的DataGen 连接器,主要是用于生成一些随机数,用于在没有数据源的时候,进行流任务的测试以及性能测试等。
java
// 如果有n个并行度, 最大值设为a
// 将数值 均分成 n份, a/n ,比如,最大100,并行度2,每个并行度生成50个
// 其中一个是 0-49,另一个50-99
env.setParallelism(2);
/**
* 数据生成器Source,四个参数:
* 第一个: GeneratorFunction接口,需要实现, 重写map方法, 输入类型固定是Long
* 第二个: long类型, 自动生成的数字序列(从0自增)的最大值(小于),达到这个值就停止了
* 第三个: 限速策略, 比如 每秒生成几条数据
* 第四个: 返回的类型
*/
public class DataGeneratorDemo {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataGeneratorSource<String> dataGeneratorSource =
new DataGeneratorSource<>(
new GeneratorFunction<Long, String>() {
@Override
public String map(Long value) throws Exception {
return "Number:"+value;
}
},
Long.MAX_VALUE,
RateLimiterStrategy.perSecond(10),
Types.STRING
);
env
.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "datagenerator")
.print();
env.execute();
}
}
从Kafka读取数据
Flink官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者FlinkKafkaConsumer,它就是用来读取Kafka数据的SourceFunction。
所以想要以Kafka作为数据源获取数据,我们只需要引入Kafka连接器的依赖。Flink官方提供的是一个通用的Kafka连接器,它会自动跟踪最新版本的Kafka客户端。目前最新版本只支持0.10.0版本以上的Kafka。
java
public class SourceKafka {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
.setBootstrapServers("hadoop102:9092")
.setTopics("topic_1")
.setGroupId("atguigu")
.setStartingOffsets(OffsetsInitializer.latest())
.setValueOnlyDeserializer(new SimpleStringSchema())
.build();
DataStreamSource<String> stream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafka-source");
stream.print("Kafka");
env.execute();
}
}