Flink-源算子-读取数据的几种方式

Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。

在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:

java 复制代码
DataStream<String> stream = env.addSource(...);

方法传入的参数是一个"源函数"(source function),需要实现SourceFunction接口。

从Flink1.12开始,主要使用流批统一的新Source架构:

java 复制代码
DataStreamSource<String> stream = env.fromSource(...)

Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。

从集合中读取数据

最简单的读取数据的方式,就是在代码中直接创建一个Java集合,然后调用执行环境的fromCollection方法进行读取。这相当于将数据临时存储到内存中,形成特殊的数据结构后,作为数据源使用,一般用于测试。

java 复制代码
public static void main(String[] args) throws Exception {

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    
List<Integer> data = Arrays.asList(1, 22, 3);
        DataStreamSource<Integer> ds = env.fromCollection(data);

	stream.print();

    env.execute();
}

从文件读取数据

真正的实际应用中,自然不会直接将数据写在代码中。通常情况下,我们会从存储介质中获取数据,一个比较常见的方式就是读取日志文件。这也是批处理中最常见的读取方式。

java 复制代码
public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        FileSource<String> fileSource = FileSource.forRecordStreamFormat(new TextLineInputFormat(), new Path("input/word.txt")).build();

        env.fromSource(fileSource,WatermarkStrategy.noWatermarks(),"file")
    .print();

        env.execute();
}

说明:

  • 参数可以是目录,也可以是文件;还可以从HDFS目录下读取,使用路径hdfs://...;

  • 路径可以是相对路径,也可以是绝对路径;

  • 相对路径是从系统属性user.dir获取路径:idea下是project的根目录,standalone模式下是集群节点根目录;

从socket读取数据

不论从集合还是文件,我们读取的其实都是有界数据。在流处理的场景中,数据往往是无界的。

我们之前用到的读取socket文本流,就是流处理场景。但是这种方式由于吞吐量小、稳定性较差,一般也是用于测试。

java 复制代码
DataStream<String> stream = env.socketTextStream("localhost", 7777);

从数据生成器读取数据

Flink从1.11开始提供了一个内置的DataGen 连接器,主要是用于生成一些随机数,用于在没有数据源的时候,进行流任务的测试以及性能测试等。

java 复制代码
  // 如果有n个并行度, 最大值设为a
        // 将数值 均分成 n份,  a/n ,比如,最大100,并行度2,每个并行度生成50个
        // 其中一个是 0-49,另一个50-99
        env.setParallelism(2);

        /**
         * 数据生成器Source,四个参数:
         *     第一个: GeneratorFunction接口,需要实现, 重写map方法, 输入类型固定是Long
         *     第二个: long类型, 自动生成的数字序列(从0自增)的最大值(小于),达到这个值就停止了
         *     第三个: 限速策略, 比如 每秒生成几条数据
         *     第四个: 返回的类型
         */
public class DataGeneratorDemo {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);

        DataGeneratorSource<String> dataGeneratorSource =
                new DataGeneratorSource<>(
                        new GeneratorFunction<Long, String>() {
                            @Override
                            public String map(Long value) throws Exception {
                                return "Number:"+value;
                            }
                        },
                        Long.MAX_VALUE,
                        RateLimiterStrategy.perSecond(10),
                        Types.STRING
                );


        env
                .fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "datagenerator")
                .print();


        env.execute();
    }
}

从Kafka读取数据

Flink官方提供了连接工具flink-connector-kafka,直接帮我们实现了一个消费者FlinkKafkaConsumer,它就是用来读取Kafka数据的SourceFunction。

所以想要以Kafka作为数据源获取数据,我们只需要引入Kafka连接器的依赖。Flink官方提供的是一个通用的Kafka连接器,它会自动跟踪最新版本的Kafka客户端。目前最新版本只支持0.10.0版本以上的Kafka。

java 复制代码
public class SourceKafka {
    public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
            .setBootstrapServers("hadoop102:9092")
            .setTopics("topic_1")
            .setGroupId("atguigu")
            .setStartingOffsets(OffsetsInitializer.latest())
            .setValueOnlyDeserializer(new SimpleStringSchema()) 
            .build();

        DataStreamSource<String> stream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafka-source");

        stream.print("Kafka");

        env.execute();
    }
}
相关推荐
数琨创享TQMS质量数智化4 分钟前
国有大型交通运输设备制造集团QMS质量管理平台案例
大数据·人工智能·物联网
yhdata5 分钟前
绿色能源新动力:硫酸亚铁助力锂电池产业,年复合增长率攀升至14.8%
大数据·人工智能
是垚不是土37 分钟前
OpenTelemetry+Jaeger+ES:分布式链路追踪实战部署
大数据·linux·运维·分布式·elasticsearch·全文检索
八月瓜科技1 小时前
AI侵权频发:国内判例定边界,国际判决敲警钟
大数据·人工智能·科技·深度学习·机器人
福赖1 小时前
《微服务即使通讯中ES的作用》
大数据·elasticsearch
盖雅工场1 小时前
业务波动适配型排班,破解零售服务业人力失衡难题
大数据·人工智能
永远不会出bug1 小时前
flink是什么东西
大数据·flink
万岳软件开发小城2 小时前
2026医疗数字化趋势:互联网医院系统源码与智慧医院APP全面爆发
大数据·人工智能·互联网医院系统源码·互联网医院app开发·互联网医院小程序·医院软件开发
福客AI智能客服2 小时前
推理赋能售后:AI淘宝客服与电商智能客服破解复杂问题困局
大数据·人工智能·机器人
Elastic 中国社区官方博客2 小时前
Elasticsearch:Apache Lucene 2025 年终总结
大数据·人工智能·elasticsearch·搜索引擎·apache·lucene