再回首感知损失在low-level上的应用

《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》是李飞飞团队在2016年发表于ECCV的文章。我近几年的工作中,所训练的模型都离不开感知损失。不得不感慨,大佬之所以是大佬,就是因为他们开创性的工作很多年后依然为人津津乐道。

本文将言简意赅的重温下感知损失的原理和作用。

  1. 网络层越深提取的特征越抽象越高级。较浅层通常提取边缘、颜色、亮度等低频信息,再深一些提取一些细节纹理等高频信息,更深一点的网络层则提取一些具有辨别性的抽象关键特征。

  2. 让 Ground Truth 和 Prediciton 经过一个预训练的 VGG 网络,通过计算 VGG 网络中间层输出特征的 Loss,来让 Prediciton 逼近 Ground Truth 的视觉感官。

  3. 上图中的 Content target 用作计算 Feature Reconstruction Loss,偏向实质性内容,比方纹理、边缘、色彩、亮度等等;Style target 用作 Style Reconstruction Loss,偏向抽象性内容,是图像表达的一种风格。

  4. Feature Reconstruction Loss 计算的时候,采用 L1 这种常见损失直接计算;Style Reconstruction Loss 计算的时候,VGG 中间输出特征先经过 Gram matrix(格拉姆矩阵:n维欧式空间中任意k个向量之间两两的内积所组成的矩阵)计算获得内积矩阵,再对该矩阵计算 L1。

实验结果1:Feature Reconstruction 随着 VGG 的特征加深而产生的变化。

实验结果2:Style Reconstruction 随着 VGG 的特征加深而产生的变化。

小结,如果是需要做一些很精细化的超分,比方人脸,追求真实自然性,那么用 Feature Reconstruction Loss 就够了,用了 Style Reconstruction Loss 容易出现一些偏色、不自然条纹等问题。

相关推荐
Liudef0644 分钟前
DeepseekV3.2 实现构建简易版Wiki系统:从零开始的HTML实现
前端·javascript·人工智能·html
珺毅同学2 小时前
YOLO输出COCO指标及YOLOv12报错
python·深度学习·yolo
格林威2 小时前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制3 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
彩云回3 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh3 小时前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
FL16238631293 小时前
智慧交通红绿灯检测数据集VOC+YOLO格式1215张3类别
深度学习·yolo·机器学习
rengang663 小时前
Spring AI Alibaba 框架使用示例总体介绍
java·人工智能·spring·spring ai·ai应用编程
FreeBuf_4 小时前
新型Agent感知伪装技术利用OpenAI ChatGPT Atlas浏览器传播虚假内容
人工智能·chatgpt
yuluo_YX4 小时前
语义模型 - 从 Transformer 到 Qwen
人工智能·深度学习·transformer