再回首感知损失在low-level上的应用

《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》是李飞飞团队在2016年发表于ECCV的文章。我近几年的工作中,所训练的模型都离不开感知损失。不得不感慨,大佬之所以是大佬,就是因为他们开创性的工作很多年后依然为人津津乐道。

本文将言简意赅的重温下感知损失的原理和作用。

  1. 网络层越深提取的特征越抽象越高级。较浅层通常提取边缘、颜色、亮度等低频信息,再深一些提取一些细节纹理等高频信息,更深一点的网络层则提取一些具有辨别性的抽象关键特征。

  2. 让 Ground Truth 和 Prediciton 经过一个预训练的 VGG 网络,通过计算 VGG 网络中间层输出特征的 Loss,来让 Prediciton 逼近 Ground Truth 的视觉感官。

  3. 上图中的 Content target 用作计算 Feature Reconstruction Loss,偏向实质性内容,比方纹理、边缘、色彩、亮度等等;Style target 用作 Style Reconstruction Loss,偏向抽象性内容,是图像表达的一种风格。

  4. Feature Reconstruction Loss 计算的时候,采用 L1 这种常见损失直接计算;Style Reconstruction Loss 计算的时候,VGG 中间输出特征先经过 Gram matrix(格拉姆矩阵:n维欧式空间中任意k个向量之间两两的内积所组成的矩阵)计算获得内积矩阵,再对该矩阵计算 L1。

实验结果1:Feature Reconstruction 随着 VGG 的特征加深而产生的变化。

实验结果2:Style Reconstruction 随着 VGG 的特征加深而产生的变化。

小结,如果是需要做一些很精细化的超分,比方人脸,追求真实自然性,那么用 Feature Reconstruction Loss 就够了,用了 Style Reconstruction Loss 容易出现一些偏色、不自然条纹等问题。

相关推荐
jndingxin1 小时前
OpenCV CUDA模块中矩阵操作------降维操作
人工智能·opencv
MARS_AI_2 小时前
智能呼叫系统中的NLP意图理解:核心技术解析与实战
人工智能·自然语言处理·nlp·交互·信息与通信
Trent19852 小时前
影楼精修-肤色统一算法解析
图像处理·人工智能·算法·计算机视觉
Blossom.1184 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
科技小E5 小时前
EasyRTC嵌入式音视频通信SDK打造带屏IPC全场景实时通信解决方案
人工智能·音视频
ayiya_Oese5 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
仙人掌_lz5 小时前
机器学习与人工智能:NLP分词与文本相似度分析
人工智能·机器学习·自然语言处理
jndingxin5 小时前
OpenCV CUDA模块中矩阵操作------归一化与变换操作
人工智能·opencv
ZStack开发者社区5 小时前
云轴科技ZStack官网上线Support AI,智能助手助力高效技术支持
人工智能·科技