再回首感知损失在low-level上的应用

《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》是李飞飞团队在2016年发表于ECCV的文章。我近几年的工作中,所训练的模型都离不开感知损失。不得不感慨,大佬之所以是大佬,就是因为他们开创性的工作很多年后依然为人津津乐道。

本文将言简意赅的重温下感知损失的原理和作用。

  1. 网络层越深提取的特征越抽象越高级。较浅层通常提取边缘、颜色、亮度等低频信息,再深一些提取一些细节纹理等高频信息,更深一点的网络层则提取一些具有辨别性的抽象关键特征。

  2. 让 Ground Truth 和 Prediciton 经过一个预训练的 VGG 网络,通过计算 VGG 网络中间层输出特征的 Loss,来让 Prediciton 逼近 Ground Truth 的视觉感官。

  3. 上图中的 Content target 用作计算 Feature Reconstruction Loss,偏向实质性内容,比方纹理、边缘、色彩、亮度等等;Style target 用作 Style Reconstruction Loss,偏向抽象性内容,是图像表达的一种风格。

  4. Feature Reconstruction Loss 计算的时候,采用 L1 这种常见损失直接计算;Style Reconstruction Loss 计算的时候,VGG 中间输出特征先经过 Gram matrix(格拉姆矩阵:n维欧式空间中任意k个向量之间两两的内积所组成的矩阵)计算获得内积矩阵,再对该矩阵计算 L1。

实验结果1:Feature Reconstruction 随着 VGG 的特征加深而产生的变化。

实验结果2:Style Reconstruction 随着 VGG 的特征加深而产生的变化。

小结,如果是需要做一些很精细化的超分,比方人脸,追求真实自然性,那么用 Feature Reconstruction Loss 就够了,用了 Style Reconstruction Loss 容易出现一些偏色、不自然条纹等问题。

相关推荐
沐雪架构师43 分钟前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
摸鱼仙人~1 小时前
Attention Free Transformer (AFT)-2020论文笔记
论文阅读·深度学习·transformer
python算法(魔法师版)1 小时前
深度学习深度解析:从基础到前沿
人工智能·深度学习
kakaZhui2 小时前
【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
人工智能·深度学习·chatgpt·aigc·llama
struggle20253 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
佛州小李哥3 小时前
通过亚马逊云科技Bedrock打造自定义AI智能体Agent(上)
人工智能·科技·ai·语言模型·云计算·aws·亚马逊云科技
云空4 小时前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代4 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊85 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
一水鉴天6 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式