再回首感知损失在low-level上的应用

《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》是李飞飞团队在2016年发表于ECCV的文章。我近几年的工作中,所训练的模型都离不开感知损失。不得不感慨,大佬之所以是大佬,就是因为他们开创性的工作很多年后依然为人津津乐道。

本文将言简意赅的重温下感知损失的原理和作用。

  1. 网络层越深提取的特征越抽象越高级。较浅层通常提取边缘、颜色、亮度等低频信息,再深一些提取一些细节纹理等高频信息,更深一点的网络层则提取一些具有辨别性的抽象关键特征。

  2. 让 Ground Truth 和 Prediciton 经过一个预训练的 VGG 网络,通过计算 VGG 网络中间层输出特征的 Loss,来让 Prediciton 逼近 Ground Truth 的视觉感官。

  3. 上图中的 Content target 用作计算 Feature Reconstruction Loss,偏向实质性内容,比方纹理、边缘、色彩、亮度等等;Style target 用作 Style Reconstruction Loss,偏向抽象性内容,是图像表达的一种风格。

  4. Feature Reconstruction Loss 计算的时候,采用 L1 这种常见损失直接计算;Style Reconstruction Loss 计算的时候,VGG 中间输出特征先经过 Gram matrix(格拉姆矩阵:n维欧式空间中任意k个向量之间两两的内积所组成的矩阵)计算获得内积矩阵,再对该矩阵计算 L1。

实验结果1:Feature Reconstruction 随着 VGG 的特征加深而产生的变化。

实验结果2:Style Reconstruction 随着 VGG 的特征加深而产生的变化。

小结,如果是需要做一些很精细化的超分,比方人脸,追求真实自然性,那么用 Feature Reconstruction Loss 就够了,用了 Style Reconstruction Loss 容易出现一些偏色、不自然条纹等问题。

相关推荐
weixin_423196176 小时前
# Python 深度学习 初始化(超参数、权重、函数输入列表)避坑指南:None 占位、可变共享与工厂函数
人工智能·深度学习
CNU-ZQQ6 小时前
opencv Cmake CUDA问题
人工智能·opencv·计算机视觉
ar01236 小时前
AR远程指导:工业行业的新型生产力引擎
人工智能·ar
冰封剑心6 小时前
适用于单张图片、多张图片和高帧率视频理解的GPT-4o级别的MLLM手机应用
人工智能·计算机视觉
默 语6 小时前
用Java撸一个AI聊天机器人:从零到一的踩坑实录
java·人工智能·spring·ai·机器人·spring ai
Skrrapper6 小时前
【大模型开发之数据挖掘】2.数据挖掘的核心任务与常用方法
数据库·人工智能·数据挖掘
围炉聊科技6 小时前
尝鲜 AWS Agentic IDE:Kiro 一周使用初体验
ide·人工智能·ai编程·aws
智算菩萨7 小时前
从对话演示到智能工作平台:ChatGPT的三年演进史(2022-2025)
人工智能·chatgpt
lsrsyx7 小时前
以科技守护长寿:Quantum Life 自主研发AI驱动平台助力港怡医疗,开启香港精准预防医疗新时代
人工智能·科技
Good kid.7 小时前
基于XGBoost的中文垃圾分类系统实战(TF-IDF + XGBoost)
人工智能·分类·tf-idf