【Datawhale 大模型基础】第三章 大型语言模型的有害性(危害)

第三章 大型语言模型的有害性(危害)

As illustrated aforementioned, LLMs have unique abilities that present only when the model have huge parameters. However, there are also some harms in LLMs.

When considering any technology, we must carefully weigh its benefits and harms. This is a complex task for three reasons:

  1. Benefits and harms are difficult to quantify;
  2. Even if they could be quantified, the distribution of these benefits and harms among the population is not uniform (marginalized groups often bear more harm), making the balancing act between them a thorny ethical issue;
  3. Even if you can make meaningful trade-offs, what authority do decision-makers have to make decisions?

Preventing of LLMs' harmfulness is still a very new research direction. The current content focuses mainly on the following two points:

  1. Harm related to performance differences: For specific tasks (such as question answering), performance differences mean that the model performs better in some groups and worse in others.
  2. Harm related to social biases and stereotypes: Social bias is the systematic association of a concept (such as science) with certain groups (such as men) over others (such as women). Stereotypes are a specific and widely held form of social bias in which the associations are widely held, oversimplified, and generally fixed.

Due to the opacity of pre-training datasets for LLMs and their inclusion of web-crawled data, it is likely that they contain online discussions encompassing political topics (e.g., climate change, abortion, gun control), hate speech, discrimination, and other forms of media bias. Some researchers have identified misogyny, pornography, and other harmful stereotypes within these pre-training datasets. Similarly, researchers **have observed that LLMs exhibit political biases that exacerbate the existing polarization in the pre-training corpora, thereby perpetuating societal biases in the prediction of hate speech and the detection of misinformation.

Recent studies have delved into the potential sources of biases in LLMs (such as training data or model specifications), the ethical concerns associated with deploying biased LLMs in diverse applications, and the current methods for mitigating these biases. An interesting find is that all models exhibit systematic preferences for stereotype data, showing that there is an eager need to establish a high-quality pre-training database.

Toxicity and disinformation are two key harms that all the researchers concern. In the context of toxicity and disinformation, LLMs can be served as two purposes:

  1. They can be used to generate toxic content, which malicious actors can exploit to amplify their information dissemination;
  2. They can be used to detect disinformation, thereby aiding in content moderation.

The challenge of identifying toxicity lies in the ambiguity of labeling, where the output may be toxic in one context but not in others, and different individuals may have varying perceptions of toxicity. Jigsaw, a division of Google, focuses on using technology to address societal issues, such as extremism. In 2017, they developed a widely popular proprietary service called Perspective, which is a machine learning model that assigns a toxicity score between 0 and 1 to each input. This model was trained on discussion pages on Wikipedia (where volunteer moderators discuss editing decisions) and labeled by crowdworkers. And the website is: https://perspectiveapi.com/.

For disinformation, it is the deliberate presentation of false or misleading information to deceive a specific audience, often with an adversarial intent. Another similar noun is misinformation (can be considered as "hallucinations"), which refers to information that is misleadingly presented as true. It is important to note that misleading and false information is not always verifiable; at times, it may raise doubts or shift the burden of proof onto the audience.

A recent research hotspot is hallucinations. To differentiate between various types of hallucinations, the given source content of the model can be analyzed, such as the prompt, potentially containing examples or retrieved context. There are two types of hallucinations: intrinsic and extrinsic hallucinations. In the former, the generated text logically contradicts the source content. In the latter, users are unable to verify the accuracy of the output based on the provided source; the source content lacks sufficient information to evaluate the output, making it undetermined. Extrinsic hallucination is not necessarily erroneous, as it simply means the model produced an output that cannot be supported or refuted by the source content. However, this is still somewhat undesirable as the provided information cannot be verified.

To better compare the difference between them, I cite a figure from a survey:

p.s. Recently I find some insteresting paper that discuss abilities about LLMs, maybe I will make notes in Chinese after finishing datawhale study.

END

相关推荐
XianxinMao1 分钟前
重构开源LLM分类:从二分到三分的转变
人工智能·语言模型·开源
Elastic 中国社区官方博客37 分钟前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上1 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy1 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar2 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink2 小时前
面试题库笔记
大数据·人工智能·机器学习
计算机软件程序设计2 小时前
NLP自然语言处理中Word2Vec和GloVe概述
自然语言处理·nlp·word2vec
Yuleave2 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理
数字化综合解决方案提供商2 小时前
【Rate Limiting Advanced插件】赋能AI资源高效分配
大数据·人工智能
一只码代码的章鱼3 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习