《PySpark大数据分析实战》-03.了解Hive

📋 博主简介

  • 💖 作者简介:大家好,我是wux_labs。😜
    热衷于各种主流技术,热爱数据科学、机器学习、云计算、人工智能。
    通过了TiDB数据库专员(PCTA)、TiDB数据库专家(PCTP)、TiDB数据库认证SQL开发专家(PCSD)认证。
    通过了微软Azure开发人员、Azure数据工程师、Azure解决方案架构师专家认证。
    对大数据技术栈Hadoop、Hive、Spark、Kafka等有深入研究,对Databricks的使用有丰富的经验。
  • 📝 个人主页:wux_labs,如果您对我还算满意,请关注一下吧~🔥
  • 📝 个人社区:数据科学社区,如果您是数据科学爱好者,一起来交流吧~🔥
  • 🎉 请支持我:欢迎大家 点赞👍+收藏⭐️+吐槽📝,您的支持是我持续创作的动力~🔥

《PySpark大数据分析实战》-03.了解Hive

《PySpark大数据分析实战》-03.了解Hive

前言

大家好!今天为大家分享的是《PySpark大数据分析实战》第1章第3节的内容:了解Hive。

了解Hive

Hadoop生态系统是为了处理大数据而产生的解决方案,MapReduce框架将计算作业切分为多个小单元分布到各个节点去执行,从而降低计算成本并提供高可扩展性。但是使用MapReduce进行数据处理分析的门槛是比较高的,需要学会使用Java根据MapReduce的API进行代码编写,这对不熟悉Java的开发人员、数据分析人员以及运维人员等人群来说门槛高、不易学。为了方便用户从现有的数据基础架构转移到Hadoop上来,Hive就诞生了。Hive是一个基于Hadoop的数据仓库工具,可以对存储在HDFS的数据集进行特殊查询和分析处理。Hive的学习门槛比较低,它提供了类似于关系型数据库SQL的查询语言HiveQL,通过HiveQL执行类SQL语句可以快速地实现简单的MapReduce统计,Hive底层会将HiveQL转换成MapReduce任务进行运行,用户不必开发MapReduce程序,非常适合数据仓库的统计分析。

在Hive中要完成WordCount程序,实现对单词出现次数的统计,首先需要在Hive中创建一张表,建表语句如下:

sql 复制代码
create table wordsTable(line String);

然后将文件内容load到Hive的表中,语句如下:

sql 复制代码
load data local inpath 'words.txt' into table wordsTable;

最后只需要执行一条SQL语句就可以完成对单词出现次数的统计,语句如下:

sql 复制代码
select word, count(1)
  from (select explode(split(line, ' ')) as word from wordsTable) tmp
 group by word;

结束语

好了,感谢大家的关注,今天就分享到这里了,更多详细内容,请阅读原书或持续关注专栏。

相关推荐
大数据魔法师38 分钟前
昆明天气数据分析与挖掘(二)- 昆明天气数据预处理
数据分析
艾上编程1 小时前
第二章——数据分析场景之用Python进行CSV/Excel数据清洗:为数据分析筑牢根基
python·数据分析·excel
睿航马克西姆1 小时前
350年飞行梦想的新突破:人类与AI共同挑战大气压力极限
数据挖掘
semantist@语校1 小时前
第五十五篇|从解释约束到结构化认知:京都国际学院的语言学校Prompt工程化实践
大数据·数据库·人工智能·python·百度·prompt·知识图谱
计算机毕业编程指导师2 小时前
【Python大数据选题】基于Spark+Django的电影评分人气数据可视化分析系统源码 毕业设计 选题推荐 毕设选题 数据分析 机器学习
大数据·hadoop·python·计算机·spark·django·电影评分人气
TDengine (老段)2 小时前
使用 deepseek 快速搭建 TDengine IDMP demo
大数据·数据库·科技·ai·时序数据库·tdengine·涛思数据
Python极客之家2 小时前
基于Django的高校二手市场与社交系统
后端·python·数据挖掘·django·毕业设计
Jackyzhe2 小时前
Flink源码阅读:如何生成StreamGraph
大数据·flink
Hello.Reader2 小时前
Flink SQL Window Deduplication按窗口“保留第一条/最后一条”记录(Streaming)
大数据·sql·flink
给朕把屎铲了2 小时前
涛思数据库:DB error: some vnode/qnode/mnode(s) out of service (10.703928s)
大数据·数据库·涛思数据