三篇论文解决了大型语言模型 (LLM) 的三个不同问题

讨论三篇论文,它们解决了大型语言模型 (LLM) 的三个不同问题类别:

  1. 减少幻觉。Reducing hallucinations.

  2. 增强小型、开放可用模型的推理能力。Enhancing the reasoning capabilities of small, openly available models.

  3. 加深我们对transformer架构的理解,并有可能简化transformer架构。Deepening our understanding of, and potentially simplifying, the transformer architecture.

Fine-tuning Language Models for Factuality

https://arxiv.org/pdf/2311.08401.pdf

这篇文章介绍了一种无需人工标注就可以改进语言模型事实正确性的方法。

主要做法是:

  1. 提出了两种自动估计长文本生成质量的方法:参考知识库一致性测量和模型自信水平测量。

  2. 根据这两种质量估计方法从未标注的数据集中采样优先级对,其中优选分数更高的文本作为preferred response。

  3. 使用Direct Preference Optimization算法对语言模型进行调优,使其在未来生成更多事实正确的文本。

  4. 在两个评价事实正确性的数据集上进行实验,结果表明只使用自动采样的优先级对就可以有效改进模型事实正确性,使错误率比RLHF模型或解码时增强事实正确性的基线方法下降超过50%。

  5. 同时探讨了事实排查参考知识和模型自信的优先级对,以及与其他方法如ITI和DOLA的结合效果。

RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback

https://arxiv.org/pdf/2309.00267.pdf

这篇文章主要介绍了使用AI生成反馈(RLAIF)进行强化学习的研究工作,其主要贡献如下:

  1. 该工作证明RLAIF在概括性、有用对话生成和无害对话生成三个文本生成任务上与使用人类反馈(RLHF)取得了相当或更好的表现,这与人类评估员的评价一致。

  2. 它表明,即使AI生成反馈模型的规模与 policy模型一致,RLAIF也可以比仅使用监督学习的基线模型取得更好的效果。这意味着RLAIF可能成为一种自我改进的方法。

  3. 直接使用AI模型直接提供奖励信号,而不需要将AI生成的偏好标签转化为奖励模型,在概括性任务上取得的效果优于前者。

  4. 它对采用不同的提示技巧生成AI标签进行了研究,发现要求AI给出思考过程能够更好地与人类偏好匹配,而采用实例学习效果不一。

  5. 研究了AI生成标签模型规模与标签质量的关系,发现标签质量随模型规模的增大不断提高。

Direct Preference Optimization: Your Language Model is Secretly a Reward Model

https://arxiv.org/pdf/2305.18290.pdf

主要研究直接优化偏好(Direct Preference Optimization,简称DPO),一种不使用强化学习就可以从人类偏好数据直接训练语言模型的简单算法。

文章的主要贡献包括:

  1. 提出了DPO算法,它可以在一个训练步骤内直接优化语言模型来符合人类偏好数据,而无需学习奖励模型或采样模型 policy,大大简化了流程。

  2. 理论分析表明,DPO等价于学习一个以另一个参考模型为基础的奖励函数,但它避免了强化学习中的一些不稳定性问题。

  3. 实验结果表明,在情感处理、总结和单轮对话等任务上,使用规模达到6B参数的语言模型,DPO的效果与强化学习算法如PPO达到或优于PPO,且训练更简单。

  4. DPO算法极其简单直观,只需要一个 classifier 似的二分类损失函数来训练,而无需复杂的强化学习流程,在实践应用中更易实现。

相关推荐
GIS工具-gistools20211 小时前
ArcGIS Excalibur 的新功能
人工智能·arcgis
THMAIL1 小时前
深度学习从入门到精通 - 迁移学习实战:用预训练模型解决小样本难题
人工智能·python·深度学习·算法·机器学习·迁移学习
音视频牛哥2 小时前
AI+ 行动意见解读:音视频直播SDK如何加速行业智能化
人工智能·音视频·人工智能+·ai+ 行动意见·rtsp/rtmp 播放器·低空经济视频链路·工业巡检视频传输
roman_日积跬步-终至千里2 小时前
【软件架构设计(19)】软件架构评估二:软件架构分析方法分类、质量属性场景、软件评估方法发展历程
人工智能·分类·数据挖掘
镭眸2 小时前
因泰立科技:用激光雷达重塑智能工厂物流生态
大数据·人工智能·科技
阿豪Jeremy2 小时前
使用MS-SWIF框架对大模型进行SFT微调
人工智能
慧星云2 小时前
双节模型创作大赛开赛啦:和魔多一起欢庆中秋国庆
人工智能·云计算·aigc
爆改模型3 小时前
【ICCV2025】计算机视觉|即插即用|ESC:超越Transformer!即插即用ESC模块,显著提升图像超分辨率性能!
人工智能·计算机视觉·transformer
带娃的IT创业者3 小时前
《AI大模型应知应会100篇》第69篇:大模型辅助的数据分析应用开发
人工智能·数据挖掘·数据分析
小胖墩有点瘦3 小时前
【基于yolo和web的垃圾分类系统】
人工智能·python·yolo·flask·毕业设计·课程设计·垃圾分类