关于torch.nn.Embedding的浅显理解

最近在使用词嵌入向量表示我的数据标签,并且在试图理解torch.nn.Embedding函数。

torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, _freeze=False, device=None, dtype=None)

这里只解释我对前两个参数的理解,这也是我唯二理解的:num_embeddings(int) -- size of the dictionary of embeddings,其实就是你给Embedding函数的张量里互不相同的数的个数;embedding_dim (int) -- the size of each embedding vector也即生成的词嵌入向量的最后一个维度。For example:

python 复制代码
import torch.nn as nn
import torch

known_label_lt = nn.Embedding(3, 10)

label = torch.tensor([
    [1, 0, 1, 0, 1],
    [2, 1, 0, 2, 1],
    [1, 1, 2, 1, 0],
    [1, 1, 0, 1, 2]
]).long() # without .long(), will result in an error. 

state = known_label_lt(label)
print(state.shape)

这里输入的向量label里只能包含三个不同的数:0,1,2 。或者反过来说known_label_lt的第一个参数只能是3,known_label_lt的第二个参数就决定了label的每一个数会被扩展到10维。所以最后生成的词嵌入维度是:

python 复制代码
torch.Size([4, 5, 10])
相关推荐
胡耀超11 小时前
DataOceanAI Dolphin(ffmpeg音频转化教程) 多语言(中国方言)语音识别系统部署与应用指南
python·深度学习·ffmpeg·音视频·语音识别·多模态·asr
HUIMU_11 小时前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
mit6.82412 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
Coovally AI模型快速验证13 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
科大饭桶13 小时前
昇腾AI自学Day2-- 深度学习基础工具与数学
人工智能·pytorch·python·深度学习·numpy
努力还债的学术吗喽14 小时前
2021 IEEE【论文精读】用GAN让音频隐写术骗过AI检测器 - 对抗深度学习的音频信息隐藏
人工智能·深度学习·生成对抗网络·密码学·音频·gan·隐写
weixin_5079299115 小时前
第G7周:Semi-Supervised GAN 理论与实战
人工智能·pytorch·深度学习
AI波克布林17 小时前
发文暴论!线性注意力is all you need!
人工智能·深度学习·神经网络·机器学习·注意力机制·线性注意力
weixin_4569042718 小时前
一文讲清楚Pytorch 张量、链式求导、正向传播、反向求导、计算图等基础知识
人工智能·pytorch·学习
Blossom.11818 小时前
把 AI 推理塞进「 8 位 MCU 」——0.5 KB RAM 跑通关键词唤醒的魔幻之旅
人工智能·笔记·单片机·嵌入式硬件·深度学习·机器学习·搜索引擎