关于torch.nn.Embedding的浅显理解

最近在使用词嵌入向量表示我的数据标签,并且在试图理解torch.nn.Embedding函数。

torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, _freeze=False, device=None, dtype=None)

这里只解释我对前两个参数的理解,这也是我唯二理解的:num_embeddings(int) -- size of the dictionary of embeddings,其实就是你给Embedding函数的张量里互不相同的数的个数;embedding_dim (int) -- the size of each embedding vector也即生成的词嵌入向量的最后一个维度。For example:

python 复制代码
import torch.nn as nn
import torch

known_label_lt = nn.Embedding(3, 10)

label = torch.tensor([
    [1, 0, 1, 0, 1],
    [2, 1, 0, 2, 1],
    [1, 1, 2, 1, 0],
    [1, 1, 0, 1, 2]
]).long() # without .long(), will result in an error. 

state = known_label_lt(label)
print(state.shape)

这里输入的向量label里只能包含三个不同的数:0,1,2 。或者反过来说known_label_lt的第一个参数只能是3,known_label_lt的第二个参数就决定了label的每一个数会被扩展到10维。所以最后生成的词嵌入维度是:

python 复制代码
torch.Size([4, 5, 10])
相关推荐
L.fountain8 小时前
图像自回归生成(Auto-regressive image generation)实战学习(一)
人工智能·深度学习·学习·计算机视觉·图像自回归
hxxjxw9 小时前
Pytorch分布式训练/多卡训练(六) —— Expert Parallelism (MoE的特殊策略)
人工智能·pytorch·python
لا معنى له10 小时前
学习笔记:卷积神经网络(CNN)
人工智能·笔记·深度学习·神经网络·学习·cnn
资源补给站10 小时前
论文13 | Nature: 数据驱动的地球系统科学的深度学习和过程理解
人工智能·深度学习
金融小师妹10 小时前
非农数据LSTM时序建模强化未来降息预期,GVX-GARCH驱动金价4300点位多空博弈
大数据·人工智能·深度学习
weixin_3954489110 小时前
迁移后的主要升级点(TDA4 相对 TDA2)
人工智能·深度学习·机器学习
光锥智能10 小时前
罗福莉首秀,雷军的AI新战事
人工智能·深度学习·机器学习
心疼你的一切10 小时前
使用Transformer构建文本分类器
人工智能·深度学习·神经网络·机器学习·transformer
资源补给站11 小时前
论文15 | 深度学习对功能性超声图像进行血管分割案例分析
人工智能·深度学习
لا معنى له11 小时前
学习笔记:Transformer
人工智能·笔记·深度学习·学习·机器学习·transformer