关于torch.nn.Embedding的浅显理解

最近在使用词嵌入向量表示我的数据标签,并且在试图理解torch.nn.Embedding函数。

torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, _freeze=False, device=None, dtype=None)

这里只解释我对前两个参数的理解,这也是我唯二理解的:num_embeddings(int) -- size of the dictionary of embeddings,其实就是你给Embedding函数的张量里互不相同的数的个数;embedding_dim (int) -- the size of each embedding vector也即生成的词嵌入向量的最后一个维度。For example:

python 复制代码
import torch.nn as nn
import torch

known_label_lt = nn.Embedding(3, 10)

label = torch.tensor([
    [1, 0, 1, 0, 1],
    [2, 1, 0, 2, 1],
    [1, 1, 2, 1, 0],
    [1, 1, 0, 1, 2]
]).long() # without .long(), will result in an error. 

state = known_label_lt(label)
print(state.shape)

这里输入的向量label里只能包含三个不同的数:0,1,2 。或者反过来说known_label_lt的第一个参数只能是3,known_label_lt的第二个参数就决定了label的每一个数会被扩展到10维。所以最后生成的词嵌入维度是:

python 复制代码
torch.Size([4, 5, 10])
相关推荐
studytosky1 小时前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
哥布林学者2 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(二)数据集设置
深度学习·ai
【建模先锋】3 小时前
精品数据分享 | 锂电池数据集(四)PINN+锂离子电池退化稳定性建模和预测
深度学习·预测模型·pinn·锂电池剩余寿命预测·锂电池数据集·剩余寿命
九年义务漏网鲨鱼4 小时前
【大模型学习】现代大模型架构(二):旋转位置编码和SwiGLU
深度学习·学习·大模型·智能体
CoovallyAIHub4 小时前
破局红外小目标检测:异常感知Anomaly-Aware YOLO以“俭”驭“繁”
深度学习·算法·计算机视觉
云雾J视界4 小时前
AI芯片设计实战:用Verilog高级综合技术优化神经网络加速器功耗与性能
深度学习·神经网络·verilog·nvidia·ai芯片·卷积加速器
噜~噜~噜~13 小时前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理
小女孩真可爱14 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
水月wwww18 小时前
深度学习——神经网络
人工智能·深度学习·神经网络
青瓷程序设计18 小时前
花朵识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习