关于torch.nn.Embedding的浅显理解

最近在使用词嵌入向量表示我的数据标签,并且在试图理解torch.nn.Embedding函数。

torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, _freeze=False, device=None, dtype=None)

这里只解释我对前两个参数的理解,这也是我唯二理解的:num_embeddings(int) -- size of the dictionary of embeddings,其实就是你给Embedding函数的张量里互不相同的数的个数;embedding_dim (int) -- the size of each embedding vector也即生成的词嵌入向量的最后一个维度。For example:

python 复制代码
import torch.nn as nn
import torch

known_label_lt = nn.Embedding(3, 10)

label = torch.tensor([
    [1, 0, 1, 0, 1],
    [2, 1, 0, 2, 1],
    [1, 1, 2, 1, 0],
    [1, 1, 0, 1, 2]
]).long() # without .long(), will result in an error. 

state = known_label_lt(label)
print(state.shape)

这里输入的向量label里只能包含三个不同的数:0,1,2 。或者反过来说known_label_lt的第一个参数只能是3,known_label_lt的第二个参数就决定了label的每一个数会被扩展到10维。所以最后生成的词嵌入维度是:

python 复制代码
torch.Size([4, 5, 10])
相关推荐
Sunhen_Qiletian1 小时前
Python 类继承详解:深度学习神经网络架构的构建艺术
python·深度学习·神经网络
LHZSMASH!2 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
忙碌5442 小时前
智能应用开发指南:深度学习、大数据与微服务的融合之道
大数据·深度学习·微服务
Dfreedom.2 小时前
Softmax 函数:深度学习中的概率大师
人工智能·深度学习·神经网络·softmax·激活函数
大明者省2 小时前
图像卷积操值超过了255怎么处理
深度学习·神经网络·机器学习
中杯可乐多加冰3 小时前
基于网易CodeWave智能开发平台构建宝可梦图鉴
深度学习·低代码·ai·数据分析·数据采集·无代码·网易codewave征文
小白狮ww3 小时前
模型不再是一整块!Hunyuan3D-Part 实现可控组件式 3D 生成
人工智能·深度学习·机器学习·教程·3d模型·hunyuan3d·3d创作
高洁014 小时前
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现(3)
人工智能·python·深度学习·神经网络·transformer
apocalypsx5 小时前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn
无风听海5 小时前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络