ES-分析器

分析器

两种常用的英语分析器

1 测试工具

bash 复制代码
#可以通过这个来测试分析器 实际生产环境中我们肯定是配置在索引中来工作
GET _analyze
{
  "text": "My Mom's Son is an excellent teacher",
  "analyzer": "english"
}

2 实际效果

比如我们有下面这样一句话:My Mom's Son is an excellent teacher

bash 复制代码
GET _analyze
{
  "text": "My Mom's Son is an excellent teacher",
  "analyzer": "english"
}

分析器分析以后,大写统一转换为了小写,is 被省了 等,所以经过这个分析器处理以后会得到下面的结果

我们换一个分析器结果就会不一样

bash 复制代码
GET _analyze
{
  "text": "My Mom's Son is an excellent teacher",
  "analyzer": "standard"
}

结果如下:

char_filter

  • html_strip 用来处理html标签
bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
      #这里是申明
        "my_char_filter": {
          "type": "html_strip", #过滤html 标签 
          "escaped_tags": [
            "a" #忽略a标签
          ]
        }
      },
      "analyzer": {
      #这里是使用
        "my_analyzer": {
          "char_filter": [
            "my_char_filter"
          ],
          "tokenizer": "keyword"
        }
      }
    }
  }
}
bash 复制代码
GET /my_index/_analyze 
{
  "text" : "<html>fdsf</html>",
  "analyzer": "my_analyzer"
}

可以看到html这个表签被替换掉了:

  • mapping 用来处理映射
bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",
          "mappings": ["S=>*","B=>*"]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "char_filter": [
            "my_char_filter"
          ],
          "tokenizer": "keyword"
        }
      }
    }
  }
}
bash 复制代码
GET /my_index/_analyze 
{
  "text" : "总是加班真SB",
  "analyzer": "my_analyzer"
}

结果如下:

  • pattern_replace
bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "pattern_replace",
          "pattern":"(\\d{3})\\d(\\d{4})",
          "replacement" : "$1****$2"
        }
      },
      "analyzer": {
        "my_analyzer": {
          "char_filter": [
            "my_char_filter" #这里是可以写多个的
          ],
          "tokenizer": "keyword"
        }
      }
    }
  }
}
bash 复制代码
GET /my_index/_analyze 
{
  "text" : "1008610086",
  "analyzer": "my_analyzer"
}

Filter

  • synonym_graph
bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "my_filter": {
          "type": "synonym_graph",
          "synonyms_path" : "analysis/analysis.txt" #这里修改文件好像是不能直接生效需要重新创建索引
        }
      },
      "analyzer": {
        "my_analyzer": {
          "filter": [
            "my_filter"
          ],
          "tokenizer": "keyword"
        }
      }
    }
  }
}
bash 复制代码
GET /my_index/_analyze 
{
  "text" : ["liyong","love","baby"],
  "analyzer": "my_analyzer"
}

运行结果如下:

也可以直接写到下面:

bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "my_filter": {
          "type": "synonym_graph",
          "synonyms" : ["liyong,love,baby=>99"] #直接把映射的东西写到这里
        }
      },
      "analyzer": {
        "my_analyzer": {
          "filter": [
            "my_filter"
          ],
          "tokenizer": "keyword"
        }
      }
    }
  }
}

GET /my_index/_analyze 
{
  "text" : ["liyong","love","baby"],
  "analyzer": "my_analyzer"
}
bash 复制代码
GET my_index/_analyze
{
 "tokenizer": "standard",
 "filter":{
 "type": "condition", #条件也就是根据下面的条件
 "filter":"uppercase", #转换为大写
 "script": {
 "source": "token.getTerm().length()<5" #小于5的字符串替换为大写
 }
 },
 "text":["assas assa sasa dsdsdsdsdsd sdsdsdss"]
}
  • stop
    Stopwords⽤于删除不要的介词和词语,以下为简写
bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer": {
          "type": "standard",
          "stopwords": [
            "me",
            "you"
          ]
        }
      }
    }
  }
}

也可以这样写:

bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "filter": {
        "my_filter": {
          "type": "stop",
          "stopwords": [
            "me",
            "you"
          ]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "standard",
          "filter": [
            "my_filter"
          ]
        }
      }
    }
  }
}

自定义分析器

bash 复制代码
PUT my_index
{
  "settings": {
    "analysis": {
      "char_filter": {
        "my_char_filter": {
          "type": "mapping",
          "mappings": [
            "&=>and",
            "|=>or"
          ]
        }
      },
      "filter": {
        "my_filter": {
          "type": "stop",
          "stopwords": [
            "is",
            "in",
            "a",
            "at"
          ]
        }
      },
      "tokenizer": {
        "my_tokenizer": {
          "type": "pattern",
          "pattern": "[ ,.!]"
        }
      },
      "analyzer": {
        "my_analyzer": {
          "char_filter": [
            "my_char_filter"
          ],
          "filter": [
            "my_filter"
          ],
          "tokenizer": "my_tokenizer",
          "type": "custom" #指定自定义
        }
      }
    }
  }
}

tokenizer 重写了分词方式 比如这个例子就是按照, . !来分割,然后进行后续的过滤处理,在实际生产环境中非常重要。

中文分词器

ik下载

安装到插件下面:

bash 复制代码
#由于没有对应的版本需要修改这个文件强行改成我们的版本
vim plugin-descriptor.properties


注意ik文件的所属用户和所属组

  • 使用
bash 复制代码
GET /my_index/_analyze
{
  "text": "我是一个兵来自老百姓",
  "analyzer": "ik_smart"
}


  • 自定义分词库
    我再config 新建一个目录config/custom.dic 自定义输入
bash 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 -->
        <entry key="ext_dict">./custom/custom.dic;./custom/custom1.dic</entry> #如果有多个用;隔开
         <!--用户可以在这里配置自己的扩展停止词字典-->
        <entry key="ext_stopwords"></entry>
        <!--用户可以在这里配置远程扩展字典 --> #这里支持远程网址词典获取这样做的好处是不用重启es 这里就可以写一个controller 来把词典打印到网页上 https://blog.csdn.net/qq_34304427/article/details/123539694?spm=1001.2014.3001.5502 可以参考这篇博客
        <!-- <entry key="remote_ext_dict">words_location</entry> -->
        <!--用户可以在这里配置远程扩展停止词字典-->
        <!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>
bash 复制代码
GET /my_index/_analyze
{
  "text": "我是一个兵来自老百姓,我真的好想你宝宝",
  "analyzer": "ik_smart"
}
相关推荐
计算机编程-吉哥12 小时前
大数据毕业设计-基于大数据的NBA美国职业篮球联赛数据分析可视化系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
计算机编程-吉哥12 小时前
大数据毕业设计-基于大数据的BOSS直聘岗位招聘数据可视化分析系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
RunningShare14 小时前
从“国庆景区人山人海”看大数据处理中的“数据倾斜”难题
大数据·flink
Hello.Reader15 小时前
Flink 执行模式在 STREAMING 与 BATCH 之间做出正确选择
大数据·flink·batch
文火冰糖的硅基工坊17 小时前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机
Elastic 中国社区官方博客17 小时前
Elasticsearch:使用推理端点及语义搜索演示
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
数据智能老司机18 小时前
数据工程设计模式——冷热数据存储
大数据·设计模式·架构
Hello.Reader21 小时前
Flink 连接器与格式thin/uber 制品、打包策略与上线清单
大数据·flink
隐语SecretFlow21 小时前
【隐私计算科普】如何实现可证明安全?
大数据·开源·边缘计算
lisw051 天前
AIoT(人工智能物联网):融合范式下的技术演进、系统架构与产业变革
大数据·人工智能·物联网·机器学习·软件工程