【GEE笔记】在线分类流程,标注样本点、分类和精度评价

GEE在线分类流程

介绍

GEE(Google Earth Engine)是一个强大的地理信息处理平台,可以实现在线的遥感影像分析和处理。本文将介绍如何使用GEE进行在线的分类流程,包括标注样本点、分类和精度评价。本文以2020年5月至8月的哨兵2影像为例,对区域内的土地覆盖类型进行分类。

标注样本点

首先,加载原始影像,进行在线的标注。

加载的影像:

加载影像的代码如下:

javascript 复制代码
var geometry = ee.Geometry.Polygon(
        [[[121.81940156260009, 40.92383488850036],
          [121.81940156260009, 40.73887826797227],
          [121.99998933115478, 40.73887826797227],
          [121.99998933115478, 40.92383488850036]]], null, false)
var year=2020 //设置年份
var bandlist=['B2','B3','B4','B8','B11','B12'] //设置波段列表
var start = ee.Date(year+'-5-1'); //设置开始日期
var finish = ee.Date(year+'-8-1'); //设置结束日期

var dataset = ee.ImageCollection('COPERNICUS/S2_SR') //加载哨兵2影像集合
                  .filterDate(start, finish) //按日期过滤
                  .filterBounds(geometry) //按范围过滤
                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) //按云量过滤
                  
dataset=dataset.select(bandlist); //按波段选择            
var rgbVis = {
  min: 0.0, 
  max: 3000, 
  bands: ['B4', 'B3', 'B2'], //设置RGB波段
};


Map.centerObject(geometry) //地图中心定位到范围
print(dataset) //打印影像集合信息

var image=dataset.median().clip(geometry) //计算影像集合的中值,并裁剪到范围
Map.addLayer(image,rgbVis) //添加影像图层

标注样本点过程如下:

1、创建样本点集合对象(集合名称可以设置为类别名称便于区分)

2、设置类别字段及其属性(属性为类别数字代码)

分类

接下来,进行分类。选择随机森林算法作为分类器(也可选择GEE官方其他分类器)。将样本点集合分为训练集和测试集,用训练集来训练分类器,用测试集来评估分类器的性能。

分类主要包括合并样本点集合、划分训练集和测试集、训练分类器、应用分类器、添加分类图层。分类的结果如下图所示:

分类的代码如下:

javascript 复制代码
var sample=danshui.merge(haishui).merge(jianpeng).merge(nongtian).merge(luwie).merge(jianzhu)
.merge(tantu).merge(caodi) //合并样本点集合

var withRandom = sample.randomColumn('random'); //给样本点集合添加随机数列
var split = 0.7;  //七成训练 三成测试
var trainingPartition2 = withRandom.filter(ee.Filter.lt('random', split)); //按随机数列划分训练集
var testingPartition = withRandom.filter(ee.Filter.gte('random', split)); //按随机数列划分测试集

var trainingPartition=image.sampleRegions({ //从影像中提取训练集的像素值
    collection: trainingPartition2, //输入训练集
    scale:10, //设置空间分辨率
    properties: ['Map'], //设置类别字段
    })
var classifier = ee.Classifier.smileRandomForest(100).train({ //训练随机森林分类器
  features: trainingPartition, //输入训练集
  classProperty:'Map', //设置类别字段
  // inputProperties :['B4', 'B3', 'B2']
});
var classied=image.classify(classifier,"smileRandomForest"); //应用分类器

Map.addLayer(classied.randomVisualizer()) //添加分类图层

精度评价

最后需要评估分类器的性能,计算分类精度。

可以通过以下代码来评估分类精度:

javascript 复制代码
var pixelValues2=classied.sampleRegions({ //从影像中提取测试集的像素值
    collection: testingPartition, //输入测试集
    scale:10, 
});
print("pixelValues2",pixelValues2); //打印测试集信息
var confusionMatrix2 = pixelValues2.errorMatrix("Map", 'smileRandomForest');//,[10,20,30,40,50,60,80,90] //计算混淆矩阵
print('confusionMatrix', confusionMatrix2); //打印混淆矩阵
print('accuracy()', confusionMatrix2.accuracy()); //打印总体精度
// print('consumersAccuracy', confusionMatrix2.consumersAccuracy());
print('kappa()', confusionMatrix2.kappa()); //打印Kappa系数
//print('order()', confusionMatrix.order());
// print('producersAccuracy()', confusionMatrix2.producersAccuracy());
相关推荐
-指短琴长-13 分钟前
决策树分类算法【sklearn/决策树分裂指标/鸢尾花分类实战】
决策树·分类·sklearn
HPC_fac1305206781616 分钟前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力
xiaoyalian5 小时前
R语言绘图过程中遇到图例的图块中出现字符“a“的解决方法
笔记·r语言·数据可视化
weixin_466202786 小时前
第31周:天气识别(Tensorflow实战第三周)
分类·数据挖掘·tensorflow
Red Red7 小时前
网安基础知识|IDS入侵检测系统|IPS入侵防御系统|堡垒机|VPN|EDR|CC防御|云安全-VDC/VPC|安全服务
网络·笔记·学习·安全·web安全
贰十六7 小时前
笔记:Centos Nginx Jdk Mysql OpenOffce KkFile Minio安装部署
笔记·nginx·centos
知兀8 小时前
Java的方法、基本和引用数据类型
java·笔记·黑马程序员
山海青风8 小时前
使用 OpenAI 进行数据探索性分析(EDA)
信息可视化·数据挖掘·数据分析
醉陌离9 小时前
渗透测试笔记——shodan(4)
笔记
LateBloomer7779 小时前
FreeRTOS——信号量
笔记·stm32·学习·freertos